Yiming Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7134452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soft Switching for Strongly Coupled Wireless Power Transfer System With 90° Dual-Side Phase Shift. IEEE Transactions on Industrial Electronics, 2022, 69, 282-292.	7.9	15
2	Design Methodology of Free-Positioning Nonoverlapping Wireless Charging for Consumer Electronics Based on Antiparallel Windings. IEEE Transactions on Industrial Electronics, 2022, 69, 825-834.	7.9	60
3	Coil Relative Position Transient Issue in Wireless Power Transfer Systems. IEEE Transactions on Industrial Electronics, 2022, 69, 2621-2630.	7.9	8
4	Passive Current Sharing of a Multiphase Inverter Based on Parallel Resonance. IEEE Transactions on Industrial Electronics, 2022, 69, 8625-8632.	7.9	4
5	General Multi-Frequency Small-Signal Model for Resonant Converters. IEEE Transactions on Power Electronics, 2022, 37, 3892-3912.	7.9	4
6	A Simple and Reconfigurable Wireless Power Transfer System With Constant Voltage and Constant Current Charging. IEEE Transactions on Power Electronics, 2022, 37, 4921-4925.	7.9	24
7	High-Accuracy and Adaptive Fault Diagnosis of High-Speed Train Bogie Using Dense-Squeeze Network. IEEE Transactions on Vehicular Technology, 2022, 71, 2501-2510.	6.3	8
8	Misalignment-Tolerant Dual-Transmitter Electric Vehicle Wireless Charging System With Reconfigurable Topologies. IEEE Transactions on Power Electronics, 2022, 37, 8816-8819.	7.9	49
9	Research and Application of Capacitive Power Transfer System: A Review. Electronics (Switzerland), 2022, 11, 1158.	3.1	17
10	Dual-Side Phase-Shift Control for Strongly Coupled Series–Series Compensated Electric Vehicle Wireless Charging Systems. World Electric Vehicle Journal, 2022, 13, 6.	3.0	1
11	Free Positioning Wireless Charging System Based on Tilted Long-Track Transmitting Coil Array. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3849-3853.	3.0	5
12	Precise Diagnosis of Unknown Fault of High-Speed Train Bogie Using Novel FBM-Net. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-11.	4.7	3
13	Realizing Constant Current and Constant Voltage Outputs and Input Zero Phase Angle of Wireless Power Transfer Systems With Minimum Component Counts. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 600-610.	8.0	61
14	Operating characteristics of four oil magnetic resonant coupling wireless power transfer under different resonant states. International Journal of Circuit Theory and Applications, 2021, 49, 415-429.	2.0	7
15	Dual-Side Phase-Shift Control of Wireless Power Transfer Implemented on Primary Side Based on Driving Windings. IEEE Transactions on Industrial Electronics, 2021, 68, 8999-9002.	7.9	43
16	Small-Signal Modeling for Phase-Shift Controlled Resonant Converters. IEEE Transactions on Industrial Electronics, 2021, 68, 11026-11034.	7.9	7
17	A Novel Co-Phase Power Supply System for Electrified Railway Based on V Type Connection Traction Transformer. Energies, 2021, 14, 1214.	3.1	5
18	KCF-Match Target Tracking Algorithm for Tracking Swing Angle of Coupler Based on Video. , 2021, , .		1

#	Article	IF	CITATIONS
19	Pulsewidth-Modulator-Based Transfer Function Measurement Method for Variable Frequency-Controlled Half- and Full-Bridge Converters. IEEE Transactions on Power Electronics, 2021, 36, 9711-9716.	7.9	1
20	Small-Signal Models of Resonant Converter With Consideration of Different Duty-Cycle Control Schemes. IEEE Transactions on Power Electronics, 2021, 36, 13234-13247.	7.9	6
21	Reduced-Order Equivalent Circuit Model of Series Resonant Converter Considering the Interaction between Resonant Elements. , 2021, , .		1
22	Inverter Phase Current Balancing for Wireless Power Transfer Systems Based on Parallel Resonant Networks. , 2021, , .		0
23	Current Balancing of a Multi-Phase Inverter for Wireless Power Transfer Systems based on Mutually Negatively Coupled Inductors. , 2021, , .		2
24	Research on Synchronous Rectification Driver Technology of High-Frequency DC-DC Resonant Converter Based on GaN Devices. IEEE Access, 2021, 9, 159577-159586.	4.2	1
25	Analysis and Design of Constant-Current and Constant-Voltage Output for LCC-N Topology in Wireless Power Transfer System. , 2021, , .		2
26	Design of High-Power Static Wireless Power Transfer via Magnetic Induction: An Overview. CPSS Transactions on Power Electronics and Applications, 2021, 6, 281-297.	4.4	65
27	A High-Power Wireless Charging System Using <i>LCL-</i> N Topology to Achieve a Compact and Low-Cost Receiver. IEEE Transactions on Power Electronics, 2020, 35, 131-137.	7.9	43
28	Three-Coil Wireless Charging System for Metal-Cover Smartphone Applications. IEEE Transactions on Power Electronics, 2020, 35, 4847-4858.	7.9	31
29	Controlling the Phase Angle in LCC-S IPT for Information Feedback. , 2020, , .		0
30	Grayscale-information-based Segmentation Registration for Fault Diagnosis of Train Components. , 2020, , .		0
31	A Metal Object Detection System with Multilayer Detection Coil Layouts for Electric Vehicle Wireless Charging. Energies, 2020, 13, 2960.	3.1	16
32	Contour-based High-speed Image Registration for Train Fault Diagnosis in Complex Environment. , 2020, , .		0
33	Metalâ€rimâ€connected inductive coupler for smartwatch applications. IET Power Electronics, 2020, 13, 3428-3434.	2.1	4
34	A Design Methodology of a Free Positioning None- Overlapping Wireless Charging System for Consumer Electronics with a Limited Parameter Variation. , 2020, , .		1
35	Three-Phase-Four-Wire Three-Level Inverter with Neutral Inductor and Neutral Module for Saving AC-Filter-Inductances and DC-Link-Capacitances. , 2020, , .		0
36	Transferring Driving Pulses to Implement Dual-Side Phase-Shift Control of Wireless Power Transfer on Primary Side Using Driving Windings. , 2020, , .		0

#	Article	IF	CITATIONS
37	A Dual Phase Shedding Method for the Improvement of Efficiency and Reduction of Regulating Requirements in Series-series Inductive Power Transfer. , 2020, , .		2
38	Efficiency Analysis of LCC-S and S-S Inductive Power Transfer Considering Switching Device and Component Losses. , 2020, , .		4
39	Coil Comparison and Downscaling Principles of Inductive Wireless Power Transfer Systems. , 2020, , .		8
40	A Compact Dynamic Wireless Power Transfer System via Capacitive Coupling Achieving Stable Output. , 2020, , .		6
41	Input Current Ripple Reduction of Switching Capacitor Converter by Dividing the Output Capacitor. , 2020, , .		0
42	Modeling and Analysis of a Strongly Coupled Series–Parallel-Compensated Wireless Power Transfer System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 1364-1370.	5.4	31
43	Modeling and Analysis of Series-None Compensation for Wireless Power Transfer Systems With a Strong Coupling. IEEE Transactions on Power Electronics, 2019, 34, 1209-1215.	7.9	75
44	Frequency Optimization of a Loosely Coupled Underwater Wireless Power Transfer System Considering Eddy Current Loss. IEEE Transactions on Industrial Electronics, 2019, 66, 3468-3476.	7.9	125
45	A review of foreign object detection (FOD) for inductive power transfer systems. ETransportation, 2019, 1, 100002.	14.8	56
46	Modelling and analysis of the distortion of strongly oupled wireless power transfer systems with SS and LCC–LCC compensations. IET Power Electronics, 2019, 12, 1321-1328.	2.1	34
47	An LCL-N Compensated Strongly-Coupled Wireless Power Transfer System for High-Power Applications. , 2019, , .		4
48	A Useful Methodology to Convert the Smartphone Metal Cover Into an Antenna Booster for NFC Applications. IEEE Transactions on Antennas and Propagation, 2019, 67, 4463-4473.	5.1	8
49	Interoperability study of fast wireless charging and normal wireless charging of electric vehicles with a shared receiver. IET Power Electronics, 2019, 12, 2551-2558.	2.1	8
50	Fault-Tolerant Wireless Power Transfer System With a Dual-Coupled LCC-S Topology. IEEE Transactions on Vehicular Technology, 2019, 68, 11838-11846.	6.3	57
51	Unified Load-Independent ZPA Analysis and Design in CC and CV Modes of Higher Order Resonant Circuits for WPT Systems. IEEE Transactions on Transportation Electrification, 2019, 5, 977-987.	7.8	71
52	An LCC-P Compensated Wireless Power Transfer System with a Constant Current Output and Reduced Receiver Size. Energies, 2019, 12, 172.	3.1	37
53	A Compact Spatial Free-Positioning Wireless Charging System for Consumer Electronics Using a Three-Dimensional Transmitting Coil. Energies, 2019, 12, 1409.	3.1	10
54	A Low-Voltage and High-Current Inductive Power Transfer System With Low Harmonics for Automatic Guided Vehicles. IEEE Transactions on Vehicular Technology, 2019, 68, 3351-3360.	6.3	36

#	Article	IF	CITATIONS
55	Underwater wireless power transfer system with a curly coil structure for AUVs. IET Power Electronics, 2019, 12, 2559-2565.	2.1	42
56	A Rotation-Free Wireless Power Transfer System With Stable Output Power and Efficiency for Autonomous Underwater Vehicles. IEEE Transactions on Power Electronics, 2019, 34, 4005-4008.	7.9	163
57	A Novel Capacitive Coupler Array With Free-Positioning Feature for Mobile Tablet Applications. IEEE Transactions on Power Electronics, 2019, 34, 6014-6019.	7.9	26
58	Frequency and Voltage Tuning of Series–Series Compensated Wireless Power Transfer System to Sustain Rated Power Under Various Conditions. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 1311-1317.	5.4	53
59	Introduction to Wireless Power Transfer. Springer Theses, 2018, , 1-21.	0.1	1
60	Transfer Efficiency Analysis. Springer Theses, 2018, , 23-38.	0.1	0
61	Multiple-Load Transfer. Springer Theses, 2018, , 67-89.	0.1	0
62	Eddy Current Loss Analysis of Underwater Wireless Power Transfer System. , 2018, , .		8
63	Analytical Models of Wireless Power Transfer Systems with a Constant-Power Load. , 2018, , .		3
64	A Rotation-Resilient Wireless Charging System for Lightweight Autonomous Underwater Vehicles. IEEE Transactions on Vehicular Technology, 2018, 67, 6935-6942.	6.3	71
65	Load characteristics of wireless power transfer system with different resonant types and resonator numbers. AIP Advances, 2017, 7, 056601.	1.3	2
66	Fault-Tolerant Control of MMC With Hot Reserved Submodules Based on Carrier Phase Shift Modulation. IEEE Transactions on Power Electronics, 2017, 32, 6778-6791.	7.9	102
67	Modeling and analysis of wireless power transfer system with constant-voltage source and constant-current load. , 2017, , .		9
68	A selection method of mutual inductance identification models based on sensitivity analysis for wireless electric vehicles charging. , 2016, , .		8
69	Comparative study of current control methods for a 5kW wireless EV charging system. , 2016, , .		2
70	A comparative study of load characteristics of resonance types in wireless transmission systems. , 2016, , .		7
71	Comparison of two bidirectional wireless power transfer control methods. , 2016, , .		5
72	A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Applied Energy, 2016, 179, 413-425.	10.1	336

#	Article	IF	CITATIONS
73	Closed-Form Oriented Modeling and Analysis of Wireless Power Transfer System With Constant-Voltage Source and Load. IEEE Transactions on Power Electronics, 2016, 31, 3472-3481.	7.9	70
74	Quasi-uniform magnetic field generated by multiple transmitters of magnetically-coupled resonant wireless power transfer. , 2015, , .		4
75	Analysis of the passive transient damping branch for suppressing the current spike and oscillation. , 2015, , .		2
76	Increasing power level of resonant wireless power transfer with relay resonators by considering resonator current amplitudes. , 2015, , .		3
77	Maximum efficiency point tracking of the wireless power transfer system for the battery charging in electric vehicles. , 2015, , .		19
78	Employing Load Coils for Multiple Loads of Resonant Wireless Power Transfer. IEEE Transactions on Power Electronics, 2015, 30, 6174-6181.	7.9	46
79	Wireless Power Transfer to Multiple Loads Over Various Distances Using Relay Resonators. IEEE Microwave and Wireless Components Letters, 2015, 25, 337-339.	3.2	74
80	Quantitative Analysis of System Efficiency and Output Power of Four-Coil Resonant Wireless Power Transfer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 184-190.	5.4	34
81	Selective Wireless Power Transfer to Multiple Loads Using Receivers of Different Resonant Frequencies. IEEE Transactions on Power Electronics, 2015, 30, 6001-6005.	7.9	162
82	Frequency Splitting Analysis of Two-Coil Resonant Wireless Power Transfer. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 400-402.	4.0	98
83	Impact of source internal resistance on efficiency of four resonant wireless power transfer topologies. , 2014, , .		0
84	Reducing the impact of source internal resistance by source coil in resonant wireless power transfer. , 2014, , .		10
85	Frequency Decrease Analysis of Resonant Wireless Power Transfer. IEEE Transactions on Power Electronics, 2014, 29, 1058-1063.	7.9	182
86	Frequency-Splitting Analysis of Four-Coil Resonant Wireless Power Transfer. IEEE Transactions on Industry Applications, 2014, 50, 2436-2445.	4.9	119
87	Frequency splitting analysis of magnetically-coupled resonant wireless power transfer. , 2013, , .		25
88	Analysis of structure and parameters in wireless power transmission system with consideration of losses in source. , 2013, , .		0
89	Load matching analysis of magnetically-coupled resonant wireless power transfer. , 2013, , .		20