
Joeri L Aerts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7134399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tâ€cell subsets in the skin and their role in inflammatory skin disorders. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 827-842.	5.7	27
2	Oncolytic Herpes Simplex Virus Type 1 Induces Immunogenic Cell Death Resulting in Maturation of BDCA-1+ Myeloid Dendritic Cells. International Journal of Molecular Sciences, 2022, 23, 4865.	4.1	10
3	Efficient Induction of Antigen-Specific CD8+ T-Cell Responses by Cationic Peptide-Based mRNA Nanoparticles. Pharmaceutics, 2022, 14, 1387.	4.5	3
4	Off the beaten path: Novel mRNA-nanoformulations for therapeutic vaccination against HIV. Journal of Controlled Release, 2021, 330, 1016-1033.	9.9	15
5	Neuroprotection by Insulin-like Growth Factor-1 in Rats with Ischemic Stroke is Associated with Microglial Changes and a Reduction in Neuroinflammation. Neuroscience, 2020, 426, 101-114.	2.3	28
6	Intranodal administration of mRNA encoding nucleoprotein provides cross-strain immunity against influenza in mice. Journal of Translational Medicine, 2019, 17, 242.	4.4	20
7	iHIVARNA phase IIa, a randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of iHIVARNA-01 in chronically HIV-infected patients under stable combined antiretroviral therapy. Trials, 2019, 20, 361.	1.6	31
8	Immune checkpoint blockade combined with <scp>IL</scp> â€6 and <scp>TGF</scp> â€î² inhibition improves the therapeutic outcome of m <scp>RNA</scp> â€based immunotherapy. International Journal of Cancer, 2018, 143, 686-698.	5.1	31
9	Potential of memory T cells in bridging preoperative chemoradiation and immunotherapy in rectal cancer. Radiotherapy and Oncology, 2018, 127, 361-369.	0.6	4
10	Dendritic cell immunotherapy followed by cART interruption during HIV-1 infection induces plasma protein markers of cellular immunity and neutrophil recruitment. PLoS ONE, 2018, 13, e0192278.	2.5	5
11	Oncolytic virus-induced cell death and immunity: a match made in heaven?. Journal of Leukocyte Biology, 2017, 102, 631-643.	3.3	35
12	Preclinical evaluation of an mRNA HIV vaccine combining rationally selected antigenic sequences and adjuvant signals (HTI-TriMix). Aids, 2017, 31, 321-332.	2.2	38
13	Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death and Disease, 2016, 7, e2560-e2560.	6.3	22
14	Disease progression in recurrent glioblastoma patients treated with the VEGFR inhibitor axitinib is associated with increased regulatory T cell numbers and T cell exhaustion. Cancer Immunology, Immunotherapy, 2016, 65, 727-740.	4.2	33
15	Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours. Scientific Reports, 2016, 6, 22509.	3.3	58
16	Comparative analysis of antibodies to xCT (Slc7a11): Forewarned is forearmed. Journal of Comparative Neurology, 2016, 524, 1015-1032.	1.6	34
17	Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs. American Journal of Cancer Research, 2016, 6, 2514-2531.	1.4	35
18	ID: 190. Cytokine, 2015, 76, 98.	3.2	0

JOERI L AERTS

#	Article	IF	CITATIONS
19	DC immunotherapy in HIV-1 infection induces a major blood transcriptome shift. Vaccine, 2015, 33, 2922-2929.	3.8	10
20	Aging-associated subpopulations of human CD8+ T-lymphocytes identified by their CD28 and CD57 phenotypes. Archives of Gerontology and Geriatrics, 2015, 61, 494-502.	3.0	27
21	Axitinib increases the infiltration of immune cells and reduces the suppressive capacity of monocytic MDSCs in an intracranial mouse melanoma model. OncoImmunology, 2015, 4, e998107.	4.6	65
22	Manipulating Immune Regulatory Pathways to Enhance T Cell Stimulation. , 2014, , .		4
23	Enhanced suppressive capacity of tumorâ€infiltrating myeloidâ€derived suppressor cells compared with their peripheral counterparts. International Journal of Cancer, 2014, 134, 1077-1090.	5.1	62
24	Location, location, location: functional and phenotypic heterogeneity between tumor-infiltrating and non-infiltrating myeloid-derived suppressor cells. Oncolmmunology, 2014, 3, e956579.	4.6	60
25	Monocyte-derived DC Electroporated with mRNAs Encoding Both Specific HIV Antigens and DC Adjuvants Are Able to Improve T-cell Functionality. AIDS Research and Human Retroviruses, 2014, 30, A194-A194.	1.1	0
26	Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation. Cancer Immunology, Immunotherapy, 2014, 63, 1023-1036.	4.2	35
27	β2-adrenergic agonists modulate TNF-α induced astrocytic inflammatory gene expression and brain inflammatory cell populations. Journal of Neuroinflammation, 2014, 11, 21.	7.2	36
28	AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells. Oncotarget, 2014, 5, 6801-6815.	1.8	17
29	Does early cell death cause germ cell loss after intratesticular tissue grafting?. Fertility and Sterility, 2013, 99, 1264-1272.e1.	1.0	10
30	Modulation of Regulatory T Cell Function by Monocyte-Derived Dendritic Cells Matured through Electroporation with mRNA Encoding CD40 Ligand, Constitutively Active TLR4, and CD70. Journal of Immunology, 2013, 191, 1976-1983.	0.8	47
31	HIV-1 evolution in patients undergoing immunotherapy with Tat, Rev, and Nef expressing dendritic cells followed by treatment interruption. Aids, 2013, 27, 2679-2689.	2.2	7
32	Abstract 4986: Myeloid-derived suppressor cells as a biomarker of tumor growth and radiosensitivity: Role of hypoxia-inducible arginase-1 , 2013, , .		0
33	Expansion of Polyfunctional HIV-Specific T Cells upon Stimulation with mRNA Electroporated Dendritic Cells in the Presence of Immunomodulatory Drugs. Journal of Virology, 2012, 86, 9351-9360.	3.4	14
34	Proinflammatory Characteristics of SMAC/DIABLO-Induced Cell Death in Antitumor Therapy. Cancer Research, 2012, 72, 1342-1352.	0.9	32
35	A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clinical Immunology, 2012, 142, 252-268.	3.2	93
36	Sequence evolution and escape from specific immune pressure of an HIVâ€1 Rev epitope with extensive sequence similarity to human nucleolar protein 6. Tissue Antigens, 2012, 79, 174-185.	1.0	4

JOERI L AERTS

#	Article	IF	CITATIONS
37	Fighting with the Enemys Weapons? The Role of Costimulatory Molecules in HIV. Current Molecular Medicine, 2011, 11, 172-196.	1.3	4
38	The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. Journal of Leukocyte Biology, 2011, 89, 989-999.	3.3	40
39	Lumenal Part of the DC-LAMP Protein Is Not Required for Induction of Antigen-Specific T Cell Responses by Means of Antigen-DC-LAMP Messenger RNA-Electroporated Dendritic Cells. Human Gene Therapy, 2010, 21, 479-485.	2.7	11
40	Attenuated Expression of A20 Markedly Increases the Efficacy of Double-Stranded RNA-Activated Dendritic Cells As an Anti-Cancer Vaccine. Journal of Immunology, 2009, 182, 860-870.	0.8	64
41	Functional T-cell responses generated by dendritic cells expressing the early HIV-1 proteins Tat, Rev and Nef. Vaccine, 2008, 26, 3735-3741.	3.8	27
42	Expression of human GITRL on myeloid dendritic cells enhances their immunostimulatory function but does not abrogate the suppressive effect of CD4+CD25+ regulatory T cells. Journal of Leukocyte Biology, 2007, 82, 93-105.	3.3	57
43	CD83 expression on dendritic cells and T cells: Correlation with effective immune responses. European Journal of Immunology, 2007, 37, 686-695.	2.9	173
44	Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Therapy, 2007, 14, 847-862.	4.5	104
45	Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunology, Immunotherapy, 2007, 56, 1513-1537.	4.2	149
46	Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Therapy, 2006, 13, 630-640.	4.5	98
47	Induction of antigen-specific CD8+ cytotoxic T cells by dendritic cells co-electroporated with a dsRNA analogue and tumor antigen mRNA. Gene Therapy, 2006, 13, 1027-1036.	4.5	30
48	Quantifying the Activity of Adenoviral E1A CR2 Deletion Mutants Using Renilla Luciferase Bioluminescence and 3â€2-Deoxy-3â€2-[18F]Fluorothymidine Positron Emission Tomography Imaging. Cancer Research, 2006, 66, 9178-9185.	0.9	25
49	Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR. BioTechniques, 2004, 36, 84-91.	1.8	142
50	The Interferon Inducer Ampligen [Poly(I)-Poly(C 12 U)] Markedly Protects Mice against Coxsackie B3 Virus-Induced Myocarditis. Antimicrobial Agents and Chemotherapy, 2004, 48, 267-274.	3.2	55
51	Mycophenolate mofetil inhibits the development of Coxsackie B3-virus-induced myocarditis in mice. BMC Microbiology, 2003, 3, 25.	3.3	27
52	Real-Time Quantitative Reverse Transcriptase-Polymerase Chain Reaction as a Method for Determining Lentiviral Vector Titers and Measuring Transgene Expression. Human Gene Therapy, 2003, 14, 497-507.	2.7	122