Kimberly M Papadantonakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7133517/publications.pdf

Version: 2024-02-01

28 papers 1,592 citations

623734 14 h-index 24 g-index

28 all docs 28 docs citations

28 times ranked 2571 citing authors

#	Article	IF	CITATIONS
1	Principles and implementations of electrolysis systems for water splitting. Materials Horizons, 2016, 3, 169-173.	12.2	202
2	Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3612-3617.	7.1	180
3	Decoupled electrochemical water-splitting systems: a review and perspective. Energy and Environmental Science, 2021, 14, 4740-4759.	30.8	172
4	A taxonomy for solar fuels generators. Energy and Environmental Science, 2015, 8, 16-25.	30.8	170
5	Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H ₂ SO ₄ . Energy and Environmental Science, 2017, 10, 2103-2108.	30.8	158
6	570 mV photovoltage, stabilized n-Si/CoO _x heterojunction photoanodes fabricated using atomic layer deposition. Energy and Environmental Science, 2016, 9, 892-897.	30.8	137
7	Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy and Environmental Science, 2015, 8, 2644-2649.	30.8	130
8	An electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH. Energy and Environmental Science, 2015, 8, 2760-2767.	30.8	82
9	Reduction of Aqueous CO ₂ to 1-Propanol at MoS ₂ Electrodes. Chemistry of Materials, 2018, 30, 4902-4908.	6.7	73
10	Membranes for artificial photosynthesis. Energy and Environmental Science, 2017, 10, 1320-1338.	30.8	65
11	A comparison of the chemical, optical and electrocatalytic properties of water-oxidation catalysts for use in integrated solar-fuel generators. Energy and Environmental Science, 2017, 10, 987-1002.	30.8	50
12	Hydrogen Evolution with Minimal Parasitic Light Absorption by Dense Co–P Catalyst Films on Structured p-Si Photocathodes. ACS Energy Letters, 2018, 3, 612-617.	17.4	41
13	Performance and failure modes of Si anodes patterned with thin-film Ni catalyst islands for water oxidation. Sustainable Energy and Fuels, 2018, 2, 983-998.	4.9	24
14	Reductant-Activated, High-Coverage, Covalent Functionalization of 1T′-MoS ₂ ., 2020, 2, 133-139.		21
15	Failure modes of protection layers produced by atomic layer deposition of amorphous TiO ₂ on GaAs anodes. Energy and Environmental Science, 2020, 13, 4269-4279.	30.8	15
16	Use of Alkane Monolayer Templates To Modify the Structure of Alkyl Ether Monolayers on Highly Ordered Pyrolytic Graphite. Langmuir, 2008, 24, 857-861.	3.5	14
17	Enhanced stability of silicon for photoelectrochemical water oxidation through self-healing enabled by an alkaline protective electrolyte. Energy and Environmental Science, 2020, 13, 4132-4141.	30.8	14
18	Nanoelectrical and Nanoelectrochemical Imaging of Pt/pâ€Si and Pt/p ⁺ â€Si Electrodes. ChemSusChem, 2017, 10, 4657-4663.	6.8	13

#	Article	lF	CITATIONS
19	Spontaneous Formation of >90% Optically Transmissive, Electrochemically Active CoP Films for Photoelectrochemical Hydrogen Evolution. Journal of Physical Chemistry Letters, 2020, 11, 14-20.	4.6	8
20	Integration of electrocatalysts with silicon microcone arrays for minimization of optical and overpotential losses during sunlight-driven hydrogen evolution. Sustainable Energy and Fuels, 2019, 3, 2227-2236.	4.9	7
21	Scanning Tunneling Microscopy Studies of Monolayer Templates: Alkylthioethers and Alkylethers. Langmuir, 2008, 24, 10543-10548.	3.5	5
22	Genesis and Propagation of Fractal Structures During Photoelectrochemical Etching of n-Silicon. ACS Applied Materials & Description (2008) 12, 17018-17028.	8.0	4
23	Influence of Substrates on the Long-Range Order of Photoelectrodeposited Se–Te Nanostructures. Nano Letters, 2019, 19, 1295-1300.	9.1	3
24	Primary Corrosion Processes for Polymer-Embedded Free-Standing or Substrate-Supported Silicon Microwire Arrays in Aqueous Alkaline Electrolytes. Nano Letters, 2021, 21, 1056-1061.	9.1	3
25	Surface Passivation and Positive Band-Edge Shift of p-Si(111) Surfaces Functionalized with Mixed Methyl/Trifluoromethylphenylacetylene Overlayers. Journal of Physical Chemistry C, 2020, 124, 16338-16349.	3.1	1
26	Understanding the Surface Corrosion Chemistry Towards Sustainable Semiconductor Photoelectrochemistry. ECS Meeting Abstracts, 2018, , .	0.0	0
27	Nucleation, Pattern Development, and Fidelity in the Photoelectrodeposition of Se-Te Nanostructures. ECS Meeting Abstracts, 2020, MA2020-01, 1216-1216.	0.0	0
28	Operational Characteristics and Failure Modes of Protected Si Anodes for Sunlight-Driven Water Oxidation. ECS Meeting Abstracts, 2018, MA2018-01, 1923-1923.	0.0	0