Kazuo Kadowaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7132768/publications.pdf

Version: 2024-02-01

314 papers 16,461 citations

25034 57 h-index 123 g-index

314 all docs

314 docs citations

314 times ranked

5162 citing authors

#	Article	IF	Citations
1	Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature, 1996, 382, 51-54.	27.8	1,273
2	Universal relationship of the resistivity and specific heat in heavy-Fermion compounds. Solid State Communications, 1986, 58, 507-509.	1.9	978
3	Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature, 1998, 392, 157-160.	27.8	952
4	Pseudogap Precursor of the Superconducting Gap in Under- and OverdopedBi2Sr2CaCu2O8+δ. Physical Review Letters, 1998, 80, 149-152.	7.8	938
5	Emission of Coherent THz Radiation from Superconductors. Science, 2007, 318, 1291-1293.	12.6	678
6	Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nature Physics, 2006, 2, 447-451.	16.7	393
7	Complete Fermi surface mapping ofBi2Sr2CaCu2O8+x(001): Coexistence of short range antiferromagnetic correlations and metallicity in the same phase. Physical Review Letters, 1994, 72, 2757-2760.	7.8	367
8	Collective Josephson Plasma Resonance in the Vortex State ofBi2Sr2CaCu2O8+δ. Physical Review Letters, 1995, 75, 4512-4515.	7.8	361
9	Renormalization of Spectral Line Shape and Dispersion belowTcinBi2Sr2CaCu2O8+δ. Physical Review Letters, 2001, 86, 1070-1073.	7.8	325
10	Electronic Spectra and Their Relation to the(Ï€,Ï€)Collective Mode in High-TcSuperconductors. Physical Review Letters, 1999, 83, 3709-3712.	7.8	319
11	Observation of the Low Temperature Pseudogap in the Vortex Cores ofBi2Sr2CaCu2O8+δ. Physical Review Letters, 1998, 80, 3606-3609.	7.8	301
12	Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy inBi2Sr2CaCu2O8+x. Physical Review B, 1996, 54, R9678-R9681.	3.2	266
13	Superconducting Gap Anisotropy and Quasiparticle Interactions: A Doping Dependent Photoemission Study. Physical Review Letters, 1999, 83, 840-843.	7.8	259
14	Momentum Dependence of the Superconducting Gap inBi2Sr2CaCu2O8. Physical Review Letters, 1995, 74, 2784-2787.	7.8	236
15	Evolution of the Fermi Surface with Carrier Concentration inBi2Sr2CaCu2O8+δ. Physical Review Letters, 1997, 78, 2628-2631.	7.8	235
16	Experimental Evidence for Giant Vortex States in a Mesoscopic Superconducting Disk. Physical Review Letters, 2004, 93, 257002.	7.8	235
17	Superconducting emitters of THz radiation. Nature Photonics, 2013, 7, 702-710.	31.4	228
18	The origin of multiple superconducting gaps in MgB2. Nature, 2003, 423, 65-67.	27.8	227

#	Article	IF	CITATIONS
19	Electronic Excitations inBi2Sr2CaCu2O8: Fermi Surface, Dispersion, and Absence of Bilayer Splitting. Physical Review Letters, 1996, 76, 1533-1536.	7.8	226
20	Unusual Dispersion and Line Shape of the Superconducting State Spectra of Bi2Sr2CaCu2O8+ \hat{l} . Physical Review Letters, 1997, 79, 3506-3509.	7.8	224
21	Electron microscopy on the Tc = 110 K (midpoint) phase in the system Bi2O3–SrO–CaO–CuO. Nature, 1988, 332, 620-623.	27.8	213
22	Quasiparticles in the Superconducting State ofBi2Sr2CaCu2O8+δ. Physical Review Letters, 2000, 84, 1788-1791.	7.8	188
23	aâ°'bPlane Microwave Surface Impedance of a High-Quality Bi2Sr2CaCu2O8Single Crystal. Physical Review Letters, 1996, 77, 735-738.	7.8	183
24	Coherent Quasiparticle Weight and Its Connection to High-TcSuperconductivity from Angle-Resolved Photoemission. Physical Review Letters, 2001, 87, 227001.	7.8	175
25	Momentum Distribution Sum Rule for Angle-Resolved Photoemission. Physical Review Letters, 1995, 74, 4951-4954.	7.8	149
26	Direct observation of tetrahertz electromagnetic waves emitted from intrinsic Josephson junctions in single crystalline Bi2Sr2CaCu2O8+. Physica C: Superconductivity and Its Applications, 2008, 468, 634-639.	1.2	148
27	Evolution of Magnetic and Superconducting Fluctuations with Doping of High-Tc Superconductors. Science, 1997, 278, 1427-1432.	12.6	138
28	Geometrical Resonance Conditions for THz Radiation from the Intrinsic Josephson Junctions in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mibini mathvariant="bold">O<mml:mrow><mml:mn>8</mml:mn><mml:mo>+</mml:mo><mml:mi>Î<td>>Srx\$mml: mi><td>mi134nml:mr l:mrow></td></td></mml:mi></mml:mrow></mml:mibini></mml:msub></mml:math>	>Srx \$ mml: mi> <td>mi134nml:mr l:mrow></td>	mi 134 nml:mr l:mrow>
29	Magnetization and Magnetoresistance of MnSi. I. Journal of the Physical Society of Japan, 1982, 51, 2433-2438.	1.6	118
30	Evidence for Pairing above the Transition Temperature of Cuprate Superconductors from the Electronic Dispersion in the Pseudogap Phase. Physical Review Letters, 2008, 101, 137002.	7.8	118
31	Broadly Tunable Subterahertz Emission from Internal Branches of the Current-voltage Characteristics of Superconducting <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mrow><mml:mn>8</mml:mn><mml:mo>+</mml:mo><mml:mi>Î<td>>Sr/<\$mml: nl:mi><td>mi½xonml:nu nml:mrow><!--</td--></td></td></mml:mi></mml:mrow></mml:msub></mml:math>	>S r/< \$mml: nl:mi> <td>mi½xonml:nu nml:mrow><!--</td--></td>	mi ½xo nml:nu nml:mrow> </td
32	Direct observation of particle-hole mixing in the superconducting state by angle-resolved photoemission. Physical Review B, 1996, 53, R14737-R14740.	3.2	109
33	Characteristics of terahertz radiation emitted from the intrinsic Josephson junctions in high-Tc superconductor Bi2Sr2CaCu2O8+δ. Applied Physics Letters, 2009, 95, .	3.3	108
34	Observation of Band Renormalization Effects in Hole-Doped High-TcSuperconductors. Physical Review Letters, 2003, 91, 157003.	7.8	100
35	Fermi Surface ofBi2Sr2CaCu2O8. Physical Review Letters, 2000, 84, 4449-4452.	7.8	98
36	Evidence for a Dual-Source Mechanism of Terahertz Radiation from Rectangular Mesas of Single Crystalline Bi ₂ Sr ₂ CaCu ₂ O _{8+l'} Intrinsic Josephson Junctions. Journal of the Physical Society of Japan, 2010, 79, 023703.	1.6	94

#	Article	IF	CITATIONS
37	Stepwise Behavior of Vortex-Lattice Melting Transition in Tilted Magnetic Fields in Single Crystals ofBi2Sr2CaCu2O8+Î. Physical Review Letters, 2001, 86, 886-889.	7.8	89
38	Anomalous Phonon Scattering BelowTcinYNi2B211C. Physical Review Letters, 1996, 77, 4628-4631.	7.8	88
39	Anomalous magnetization behavior of single crystalline Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 1992, 195, 127-134.	1.2	84
40	Output from a Josephson stimulated terahertz amplified radiation emitter. Journal of Physics Condensed Matter, 2010, 22, 375701.	1.8	78
41	Small superconducting gap on part of the Fermi surface ofYNi2B2Cfrom the de Haas–van Alphen effect. Physical Review B, 1997, 56, 5120-5123.	3.2	76
42	Nondispersive Fermi Arcs and the Absence of Charge Ordering in the Pseudogap Phase ofBi2Sr2CaCu2O8+Î [°] . Physical Review Letters, 2006, 96, 107006.	7.8	75
43	Effect of thermal inhomogeneity for terahertz radiation from intrinsic Josephson junction stacks of Bi2Sr2CaCu2O8+ <i>\hat{I}</i>	3.3	73
44	Single crystal growth of quaternary superconductor YNi2B2C by a floating zone method. Physica C: Superconductivity and Its Applications, 1996, 256, 220-226.	1.2	71
45	Observation of a d-wave nodal liquid in highly underdoped Bi2Sr2CaCu2O8+δ. Nature Physics, 2010, 6, 99-103.	16.7	71
46	Cu NMR Study in Single Crystal Bi2Sr2CaCu2O8–Observation of Gapless Superconductivity–. Journal of the Physical Society of Japan, 1994, 63, 1104-1113.	1.6	67
47	Continuous 30 μW terahertz source by a high- <i>Tc</i> superconductor mesa structure. Applied Physics Letters, 2013, 103, .	3.3	67
48	A high-Tc intrinsic Josephson junction emitter tunable from 0.5 to 2.4 terahertz. Applied Physics Letters, 2015, 107, .	3.3	65
49	Generation of electromagnetic waves from 0.3 to 1.6 terahertz with a high-Tc superconducting Bi2Sr2CaCu2O8+ $\langle i \rangle \hat{l}' \langle l \rangle$ intrinsic Josephson junction emitter. Applied Physics Letters, 2015, 106, .	3.3	65
50	Scanning SQUID microscopy of vortex clusters in multiband superconductors. Physical Review B, 2010, 81, .	3.2	64
51	Electronic phase diagram of high-temperature copper oxide superconductors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9346-9349.	7.1	64
52	In-phase electrodynamics and terahertz wave emission in extended intrinsic Josephson junctions. Physical Review B, 2009, 79, .	3.2	62
53	Resistive transition in single-crystalline YBa2Cu3O7 for various configurations of current and magnetic field directions. Physica C: Superconductivity and Its Applications, 1989, 161, 313-318.	1.2	60
54	First-Order Decoupling Transition in the Vortex Lattice of Bi2Sr2CaCu2O8 from Local Mutual Inductance Measurements. Physical Review Letters, 1995, 75, 4520-4523.	7.8	60

#	Article	IF	CITATIONS
55	Local SiC photoluminescence evidence of hot spot formation and sub-THz coherent emission from a rectangular <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mtext>Bi</mml:mtext> Physical Review B, 2014, 89, .</mml:mrow></mml:msub></mml:math>	mml:mrow	/> <mml:mn></mml:mn>
56	Lorentz-force-independent dissipation in high-temperature superconductors. Superconductor Science and Technology, 1994, 7, 519-540.	3. 5	58
57	Peak Effect and Dynamic Melting of Vortex Matter inNbSe2Crystals. Physical Review Letters, 2005, 95, 177005.	7.8	58
58	Modification of vortex behavior through heavy ion lithography. Physica C: Superconductivity and Its Applications, 2002, 382, 137-141.	1.2	56
59	Terahertz imaging system using high- <i>Tc</i> superconducting oscillation devices. Journal of Applied Physics, 2012, 111, .	2.5	56
60	Direct imaging of hot spots in Bi2Sr2CaCu2O8+ \hat{l} mesa terahertz sources. Journal of Applied Physics, 2013, 113, .	2.5	56
61	High Temperature Superconductor Terahertz Emitters: Fundamental Physics and Its Applications. Japanese Journal of Applied Physics, 2012, 51, 010113.	1.5	55
62	Local Electrodynamics in Heavy Ion IrradiatedBi2Sr2CaCu2O8+δ. Physical Review Letters, 1996, 77, 1155-1158.	7.8	54
63	Tunable terahertz emission from the intrinsic Josephson junctions in acute isosceles triangular Bi_2Sr_2CaCu_2O_8+δmesas. Optics Express, 2013, 21, 2171.	3.4	54
64	Longitudinal Josephson-plasma excitation inBi2Sr2CaCu2O8+Î:Direct observation of the Nambu-Goldstone mode in a superconductor. Physical Review B, 1997, 56, 5617-5621.	3.2	53
65	ARPES study of the superconducting gap and pseudogap in Bi2Sr2CaCu2O8+x. Journal of Physics and Chemistry of Solids, 1998, 59, 1888-1891.	4.0	53
66	High-power terahertz electromagnetic wave emission from high-T_c superconducting Bi_2Sr_2CaCu_2O_8+l^ mesa structures. Optics Express, 2011, 19, 3193.	3.4	53
67	Impurity effects on electron–mode coupling in high-temperature superconductors. Nature Physics, 2006, 2, 27-31.	16.7	52
68	Low-temperature specific heat of REBa2Cu3O7 in magnetic fields up to 5 T (RE = Y, Pr, Sm, Eu, Gd, Dy, Ho,) Tj ETC)q0,0 0 rgl	BŢ/Overlock
69	Electron microscopy on Pb2Sr2Ca0.5Y0.5Cu3O8+ \hat{l} . Physica C: Superconductivity and Its Applications, 1989, 158, 155-172.	1.2	51
70	Electron Spin Resonance in the Itinerant-Electron Helical Magnet MnSi. Journal of the Physical Society of Japan, 1977, 42, 1555-1561.	1.6	50
71	De Hass - van Alphen oscillations in the normal and superconducting states of the boro-carbide superconductor YNi2B2C. Solid State Communications, 1995, 96, 459-463.	1.9	50
72	Excitation of Josephson plasma and vortex oscillation modes inBi2Sr2CaCu2O8+Îîn parallel magnetic fields. Physical Review B, 1997, 55, R8685-R8688.	3.2	50

#	Article	IF	CITATIONS
73	Integrated, Portable, Tunable, and Coherent Terahertz Sources and Sensitive Detectors Based on Layered Superconductors. Proceedings of the IEEE, 2020, 108, 721-734.	21.3	50
74	Electron tunneling into superconducting YB6. Solid State Communications, 1984, 52, 659-661.	1.9	48
75	Mode separation of the Josephson plasma inBi2Sr2CaCu2O8+δ. Physical Review B, 1998, 57, 3108-3115.	3.2	47
76	High-field magnetization of single-crystalline YBa2Cu3O7. Physica C: Superconductivity and Its Applications, 1990, 169, 81-86.	1.2	46
77	Broadly tunable, high-power terahertz radiation up to 73 K from a stand-alone Bi2Sr2CaCu2O8+ <i>Î′</i> mesa. Applied Physics Letters, 2014, 105, .	3.3	45
78	Terahertz wave emission from intrinsic Josephson junctions in high- <i>T</i> _c superconductors. Superconductor Science and Technology, 2009, 22, 114009.	3.5	44
79	Spin-triplet vortex state in the topological superconductor CuxBi2Se3. Physical Review B, 2011, 83, .	3.2	44
80	Processing and fabrication of Bi2Sr2CaCu2Ov/Ag tapes and small scale coils. Applied Superconductivity, 1993, 1, 43-51.	0.5	43
81	Anomalous magnetization behavior of single-crystallineCeRu2. Physical Review B, 1996, 54, 462-468.	3.2	43
82	Crystal Structure of Magnetic Superconductor FeSr2YCu2O6+ \hat{l} ′. Journal of the Physical Society of Japan, 2002, 71, 790-796.	1.6	43
83	High Temperature Superconductor Terahertz Emitters: Fundamental Physics and Its Applications. Japanese Journal of Applied Physics, 2012, 51, 010113.	1.5	43
84	Torque Study of Layered Superconducting OxideBi2Sr2CaCu2O8+Î'Single Crystal. Journal of the Physical Society of Japan, 1991, 60, 3226-3229.	1.6	42
85	Linear and Field-Independent Relation between Vortex Core State Energy and Gap inBi2Sr2CaCu2O8+δ. Physical Review Letters, 2001, 87, 267001.	7.8	42
86	Three-dimensional numerical analysis of terahertz radiation emitted from intrinsic Josephson junctions with hot spots. Physical Review B, 2012, 85, .	3.2	42
87	Interferometer measurements of terahertz waves from Bi ₂ Sr ₂ CaCu ₂ O _{8+<i>d</i>} mesas. Superconductor Science and Technology, 2012, 25, 125004.	3 . 5	40
88	Weak ferromagnetic ordering in the superconducting state of ErNi211B2C. Journal of Physics and Chemistry of Solids, 1999, 60, 1053-1057.	4.0	39
89	Thermal Management in Large Bi2212 Mesas Used for Terahertz Sources. IEEE Transactions on Applied Superconductivity, 2009, 19, 428-431.	1.7	39
90	Influence of columnar defects on vortex dynamics inBi2Sr2CaCu2O8from out-of-plane and flux transformer transport measurements. Physical Review B, 1996, 53, 14611-14620.	3.2	38

#	Article	IF	Citations
91	Emission of Terahertz Waves From Stacks of Intrinsic Josephson Junctions. IEEE Transactions on Applied Superconductivity, 2009, 19, 886-890.	1.7	38
92	Angular Dependence of the Radiation Power of a Josephson STAR-emitter. Journal of Superconductivity and Novel Magnetism, 2010, 23, 613-616.	1.8	37
93	Geometrical Full-Wavelength Resonance Mode Generating Terahertz Waves from a Single-Crystalline Bi $<$ sub $>$ 2 $<$ sub $>$ 5 $<$ 5ub $>$ 2 $<$ 1sub $>$ 60 $<$ 8ub $>$ 8+ 1 0 $<$ 9sub $>$ 8+ 1 1 $<$ 9sub $>$ 8 Rectangular Mesa. Journal of the Physical Society of Japan, 2011, 80, 094709.	1.6	37
94	Evolution of magnetic and superconducting fluctuations with doping of high-Tc superconductors: An electronic Raman scattering study. Journal of Physics and Chemistry of Solids, 1998, 59, 1932-1936.	4.0	36
95	Quantum terahertz electronics (QTE) using coherent radiation from high temperature superconducting Bi2Sr2CaCu2O8+Î′ intrinsic Josephson junctions. Physica C: Superconductivity and Its Applications, 2013, 491, 2-6.	1.2	36
96	Synthesis of YNi2B2C thin films by magnetron sputtering. Applied Physics Letters, 1994, 65, 1299-1301.	3.3	35
97	Thermal conductivity ofRNi2B2C (R=Y,Ho) single crystals. Physical Review B, 1996, 54, 3062-3065.	3.2	35
98	Interesting magnetic behavior from reduced titanium dioxide nanobelts. Applied Physics Letters, 2008, 92, 232502.	3.3	35
99	Spectral investigation of hot spot and cavity resonance effects on the terahertz radiation from high- <i>T</i> _c superconducting Bi ₂ Sr ₂ CaCu ₂ O _{8+<i>Î</i>} mesas. Journal of Physics Condensed Matter, 2014, 26, 172201.	1.8	35
100	Superconducting diamagnetic magnetization of single crystalline Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 1991, 185-189, 2249-2250.	1.2	34
101	Emission of terahertz electromagnetic waves from intrinsic Josephson junction arrays embedded in resonance LCR circuits. Physical Review B, 2011, 83, .	3.2	34
102	Superconductivity and antiferromagnetic order in the U(Pt,Pd)3system. Journal of Applied Physics, 1987, 61, 3380-3382.	2.5	32
103	Broadening phenomena of the resistive transition in single-crystalline YBa2Cu3O7 in magnetic fields. Physica C: Superconductivity and Its Applications, 1990, 170, 298-306.	1.2	32
104	Structure and Superconducting Properties of Y-Pd-B-C System. Japanese Journal of Applied Physics, 1994, 33, L590-L593.	1.5	32
105	Cavity mode waves during terahertz radiation from rectangular Bi $<$ sub $>$ 2 $<$ /sub $>$ Sr $<$ sub $>$ 2 $<$ /sub $>$ CaCu $<$ sub $>$ 2 $<$ /sub $>$ O $<$ sub $>$ 8 + Î $<$ 2 $ $ sub $>$ mesas. Journal of Physics Condensed Matter, 2011, 23, 025701.	1.8	32
106	Macroscopic quantum phenomena in high-Tcsuperconducting material. Physical Review B, 1987, 35, 8858-8860.	3.2	31
107	Soft-x-ray absorption spectroscopy of electron-doped (Nd,Sm)2â^'xCexCuO4â^'Î'compounds. Physical Review B, 1990, 42, 1997-2002.	3. 2	31
108	Superconducting phase transitions in ErcY1â^'cRh4B4. Solid State Communications, 1979, 32, 185-188.	1.9	30

7

#	Article	IF	CITATIONS
109	Synthesis, phase formation and high-Tc superconductivity at 78 K of Pb2Sr2Y1â^'xCaxCu3O8+Î'. Physica C: Superconductivity and Its Applications, 1989, 159, 165-172.	1.2	30
110	Applications using high-Tc superconducting terahertz emitters. Scientific Reports, 2016, 6, 23178.	3.3	30
111	Superconducting and tetragonal-to-orthorhombic transitions in single crystals of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>FeSe</mml:mi><mml:math< td=""><td>ıl:mrow><r< td=""><td>nml:mn>1</td></r<></td></mml:math<></mml:msub></mml:mrow></mml:math>	ıl:mrow> <r< td=""><td>nml:mn>1</td></r<>	nml:mn>1

#	Article	IF	CITATIONS
127	Investigations on the phase formations, properties and single crystal growth in the high-Tc superconducting Ca-Sr-Bi-Cu-O system. Physica C: Superconductivity and Its Applications, 1988, 152, 431-437.	1.2	22
128	Double anomaly in the specific heat of superconducting UPt3 and UPt3B0.11. Physica B: Condensed Matter, 1990, 163, 564-566.	2.7	22
129	Study of coherent and continuous terahertz wave emission in equilateral triangular mesas of superconducting Bi2Sr2CaCu2O8+l intrinsic Josephson junctions. Physica C: Superconductivity and Its Applications, 2013, 491, 16-19.	1.2	21
130	Modeling the electromagnetic cavity mode contributions to the THz emission from triangular Bi2Sr2CaCu2O8+δmesas. Physica C: Superconductivity and Its Applications, 2013, 491, 30-34.	1,2	20
131	Improved excitation mode selectivity of high-Tc superconducting terahertz emitters. Journal of Applied Physics, 2018, 124, .	2.5	20
132	Scanning tunneling spectroscopy of Bi2Sr2CaCu2O8+ \hat{l} ′. Physica C: Superconductivity and Its Applications, 1998, 298, 105-114.	1,2	19
133	Two different types of pseudogaps in high-Tc superconductors. Journal of Physics and Chemistry of Solids, 2001, 62, 41-45.	4.0	19
134	Homogeneous samples of Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 2003, 391, 376-380.	1.2	18
135	Characteristic terahertz absorption spectra of paramylon and paramylon-ester compounds. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 244, 118828.	3.9	18
136	Penetration of vortices into micro-superconductors observed with a scanning SQUID microscope. Physica C: Superconductivity and Its Applications, 2004, 412-414, 379-384.	1.2	17
137	Redistribution of Fe ion and superconductivity of FeSr2YCu2O6+y system. Physica C: Superconductivity and Its Applications, 2004, 417, 17-24.	1.2	17
138	Continuous and reversible operation of Bi2212 based THz emitters just below Tc. Physica C: Superconductivity and Its Applications, 2010, 470, S822-S823.	1.2	17
139	Upper critical fields and critical current density of single crystal. Solid State Communications, 2010, 150, 1178-1181.	1.9	17
140	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mmultiscripts><mml:mi>Se</mml:mi><mml:mpres <br="">/><mml:none></mml:none><mml:mn>77</mml:mn></mml:mpres></mml:mmultiscripts> nuclear magnetic resonance of topological insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:m< td=""><td>3.2</td><td>17</td></mml:m<></mml:msub></mml:mrow></mml:math 	3.2	17
141	Physical Review B, 2016, 93, . Antiferromagnetic Nuclear Resonance and Nuclear Quadrupole Resonance of Cu in Pb2Sr2RECu3O8+Î′(RE=Y, Eu and Gd). Journal of the Physical Society of Japan, 1990, 59, 1549-1552.	1.6	16
142	Observation of an extended magnetic field penetration in amorphous superconducting MoGe films. Physical Review B, 2008, 77, .	3.2	16
143	High-field magnetization of high-Tc REBa2Cu3O7 compounds. Physica C: Superconductivity and Its Applications, 1988, 152, 72-76.	1.2	15
144	Flux creep associated with bulk pinning and edge barriers in BSCCO-2212 single crystals. Superconductor Science and Technology, 1997, 10, 195-202.	3.5	15

#	Article	IF	Citations
145	Precise magnetization measurements of single crystallineBi2Sr2CaCu2O8+l´. Physical Review B, 1998, 57, 11674-11683.	3.2	15
146	Scaling of vortex lattice melting transition in single crystals of Bi2Sr2CaCu2O8+Î′. Physica C: Superconductivity and Its Applications, 2001, 357-360, 450-453.	1.2	15
147	Hall effect of UPt3. Journal of Physics F: Metal Physics, 1986, 16, L63-L66.	1.6	14
148	Positron annihilation 2D-ACAR measurements in the incommensurately modulated high-Tc superconductor Bi2Sr2CaCu2O8+x. Physica C: Superconductivity and Its Applications, 1991, 176, 113-120.	1.2	14
149	Origin of dissipation in high-Tcsuperconductors. Physical Review B, 1994, 50, 7230-7233.	3.2	14
150	Vortex Imaging in Microscopic Superconductors With a Scanning SQUID Microscope. IEEE Transactions on Applied Superconductivity, 2005, 15, 696-698.	1.7	14
151	Irreversible magnetization and upper critical field of YBa2Cu3O7 single crystals in high magnetic fields. Physica B: Condensed Matter, 1989, 155, 136-139.	2.7	13
152	Sudden disappearance of c-axis dissipation in single-crystalline Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 1996, 263, 164-171.	1.2	13
153	THz emission from a triangular mesa structure of Bi-2212 intrinsic Josephson junctions. Journal of Physics: Conference Series, 2012, 400, 022014.	0.4	13
154	Electrical potential distribution in terahertz-emitting rectangular mesa devices of high- <i>T<i><i><i><<</i></i></i><td>3.5</td><td>13</td></i>	3. 5	13
155	Terahertz emission from the intrinsic Josephson junctions of high-symmetry thermally-managed Bi ₂ Sr ₂ CaCu ₂ O _{8+<i>i)í</i>/sub>microstrip antennas. IOP Conference Series: Materials Science and Engineering, 2017, 279, 012017.}	0.6	13
156	Magnetism and superconductivity in RET2B2C (REî—»Y and Tî—»Ni, Co) systems. Physica B: Condensed Matter, 1995, 206-207, 555-558.	2.7	12
157	Temperature dependence of tunneling spectra in YBa2Cu3O7â^î´ and Bi2Sr2CaCu2O8+δ single crystals. Journal of Electron Spectroscopy and Related Phenomena, 2000, 109, 147-155.	1.7	12
158	Order, disorder and superconductivity in FeSr2YCu2O6+ \hat{l} . Physica C: Superconductivity and Its Applications, 2004, 415, 85-93.	1.2	12
159	Molecular vibration and Boson peak analysis of glucose polymers and ester via terahertz spectroscopy. Carbohydrate Polymers, 2020, 232, 115789.	10.2	12
160	The magnetic field dependence of the low temperature specific heat in single crystals of YBa2Cu3O7. Physica C: Superconductivity and Its Applications, 1990, 168, 363-369.	1.2	11
161	Anisotropy of the electronic structure and superconducting gap inBi2Sr2CaCu2O8. Physical Review B, 1995, 51, 3945-3948.	3.2	11
162	The role of angle-resolved photoemission in understanding the high temperature superconductors. Journal of Physics and Chemistry of Solids, 2001, 62, 35-39.	4.0	11

#	Article	IF	CITATIONS
163	Synthesis and superconducting properties of graphite compounds intercalated with Ca:C6Ca. Physica C: Superconductivity and Its Applications, 2007, 460-462, 152-153.	1.2	11
164	Quantum oscillation of the c-axis resistivity due to entrance of pancake vortices into micro-fabricated Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions. Physica C: Superconductivity and Its Applications, 2008, 468, 669-673.	1.2	11
165	Large low-temperature magnetoresistance in SrFe ₂ As ₂ single crystals. Europhysics Letters, 2013, 104, 17002.	2.0	11
166	High temperature characterization of the YBa2Cu3O9 \hat{a} y phase. Journal of the Less Common Metals, 1987, 136, 169-173.	0.8	10
167	Flux-line lattice dynamics and irreversibility line in single crystalline Bi2Sr2CaCu2O8+ delta. Superconductor Science and Technology, 1991, 4, S88-S90.	3.5	10
168	Observation of the Nambu-Goldstone mode in the high-temperature superconductor Bi 2 Sr 2 CaCu 2 O 8 + \hat{l} ′. Europhysics Letters, 1998, 42, 203-208.	2.0	10
169	Vortex lattice melting transition in oblique magnetic fields in single crystal Bi2Sr2CaCu2O8+δ. Physica B: Condensed Matter, 2000, 284-288, 733-734.	2.7	10
170	Superconducting plasma excitation at microwave frequencies in parallel magnetic fields in Bi2Sr2CaCu2O8+l´. Physica C: Superconductivity and Its Applications, 2001, 362, 71-77.	1.2	10
171	Flux quantization in a superconducting microdisk. Physica C: Superconductivity and Its Applications, 2003, 388-389, 719-720.	1.2	10
172	Vortex states in high-Tc superconductors and superconductivity in modern nano-science and engineering. Science and Technology of Advanced Materials, 2005, 6, 589-603.	6.1	10
173	Normal-state magnetic susceptibilities in Bi2Sr2Ca(Cu1â^'xNix)2O8+Î^ single crystals. Physica C: Superconductivity and Its Applications, 2007, 460-462, 799-800.	1.2	10
174	Terahertz radiation generated from cylindrical mesas of Bi2212. Physica C: Superconductivity and Its Applications, 2010, 470, S779-S781.	1.2	10
175	Thermoreflectance microscopy measurements of the Joule heating characteristics of high-Tc superconducting terahertz emitters. Journal of Applied Physics, 2017, 122, .	2.5	10
176	Cavity modes in broadly tunable superconducting coherent terahertz sources. Journal of Physics: Conference Series, 2019, 1182, 012011.	0.4	10
177	Magnetic and Transport Studies on Electron-Doped CeFeAsO _{1-<i>x</i>xxxxxy} Superconductor. Journal of the Physical Society of Japan, 2008, 77, 27-31.	1.6	10
178	Effect of Substitutions on Heavy-Fermion UPt ₃ . Japanese Journal of Applied Physics, 1987, 26, 1243.	1.5	10
179	High resolution electron microscopy on grain boundaries in Pb2Sr2â^'xLaxCu2O6+â^,, Pb2(Sr,) Tj ETQq1 1 0.784 390-401.	314 rgBT 1.2	Overlock 10 9
180	Anomalous band folding due to the BiO superstructure inBi2Sr2CaCu2O8studied by angle-resolved photoemission. Physical Review B, 1994, 50, 10225-10229.	3.2	9

#	Article	IF	Citations
181	Spin correlations in the normal state of a Bi2Sr2CaCu2O8 single crystal. Physica C: Superconductivity and Its Applications, 1996, 263, 371-374.	1.2	9
182	Moving Vortex States Studied by Current Flow in Single CrystalBi2Sr2CaCu2O8+ \hat{l} . Physical Review Letters, 1999, 82, 2374-2377.	7.8	9
183	Anomalous static and dynamic behaviors of the vortex liquid phase in Bi2Sr2CaCu2O8+Î'. Physica C: Superconductivity and Its Applications, 2001, 357-360, 442-445.	1.2	9
184	Neutron Powder Diffraction Study on Mg11B2Synthesized by Different Procedures. Journal of the Physical Society of Japan, 2002, 71, 2471-2476.	1.6	9
185	Elastic tensor of YNi2B2C. Physica C: Superconductivity and Its Applications, 2003, 397, 1-6.	1.2	9
186	Magnetic field effects on THz radiation from rectangular shape Bi2212 IJJ's. Physica C: Superconductivity and Its Applications, 2010, 470, S804-S805.	1.2	9
187	Effects of magnetic fields on the coherent THz emission from mesas of single crystal Bi2Sr2CaCu2O8+l´. Physica C: Superconductivity and Its Applications, 2013, 494, 117-120.	1.2	9
188	Attractive interaction between superconducting vortices in tilted magnetic fields. Communications Physics, 2019, 2, .	5.3	9
189	Local epitaxy of Ag onBi2Sr2CaCu2O8+x(001). Physical Review B, 1993, 48, 6732-6735.	3.2	8
190	Outâ€ofâ€plane magnetoresistivity for fields parallel to thecaxis in singleâ€crystalline (La1â^'xSrx)2CuO4. Journal of Applied Physics, 1994, 76, 1706-1710.	2.5	8
191	Phase coherence and Josephson plasma in Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 1997, 293, 130-135.	1.2	8
192	Systematic Magnetization Measurements on Single Crystalline Bi2Sr2CaCu2O8+δwith Columnar Defects. Journal of Low Temperature Physics, 1999, 117, 1471-1475.	1.4	8
193	Doping dependence of the upper critical field, superconducting current density and thermally activated flux flow activation energy in polycrystalline CeFeAsO 1- x F x superconductors. Physica C: Superconductivity and Its Applications, 2014, 507, 35-40.	1.2	8
194	High- <i>T</i> c superconducting THz emitters fabricated by wet etching. AIP Advances, 2019, 9, .	1.3	8
195	Electrical resistivity of the heavy-fermion compounds (U, Th)Pt3. Journal of Magnetism and Magnetic Materials, 1987, 70, 403-404.	2.3	7
196	Two dimensional superconducting properties in single crystalline Bi2Sr2CaCu2O8+ if . Physica C: Superconductivity and Its Applications, 1991, 185-189, 1811-1812.	1.2	7
197	Crystal Structure of Pb2Sr2MCu3O8+Î'System (M=Nd, Sm, Eu, Gd, Dy, Y1-xCax, Ho and Er). Journal of the Physical Society of Japan, 1992, 61, 881-890.	1.6	7
198	Electrical resistivity of some uranium compounds. Physica B: Condensed Matter, 1993, 186-188, 727-729.	2.7	7

#	Article	IF	CITATIONS
199	Josephson plasma excitation in high-Tc superconductors with finite dimensions. Physica C: Superconductivity and Its Applications, 1997, 293, 64-67.	1.2	7
200	Observations of Suppression of Static and Dynamic Disorder inBi2.15Sr1.85CaCu2O8+Î Crystals by Columnar Defects. Physical Review Letters, 1998, 81, 5209-5212.	7.8	7
201	Non-linear resistance behavior in parallel magnetic fields: indication of the vortex-smectic phase in Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 2001, 364-365, 515-517.	1.2	7
202	High-Field Magnetization Measurements and Crystalline Electric-Field Effect in HoNi2B2C. Journal of the Physical Society of Japan, 2003, 72, 2599-2603.	1.6	7
203	Melting of the vortex-solid in irradiated Bi2Sr2CaCu2O8+δsingle crystals in tilted magnetic fields. New Journal of Physics, 2006, 8, 226-226.	2.9	7
204	Small-number arrays of intrinsic Josephson junctions. Physica C: Superconductivity and Its Applications, 2008, 468, 674-678.	1.2	7
205	Surface superconductivity on SrFe ₂ As ₂ single crystals induced by ion implantation. Europhysics Letters, 2011, 94, 37009.	2.0	7
206	Josephson effect in Al/Bi2Se3/Al coplanar hybrid devices. Physica C: Superconductivity and Its Applications, 2014, 503, 162-165.	1.2	7
207	Unusual 209Bi NMR quadrupole effects in topological insulator Bi2Se3. Journal of Magnetic Resonance, 2019, 302, 34-42.	2.1	7
208	Liquid helium-free high- <i>T</i> _c superconducting terahertz emission system and its applications. Japanese Journal of Applied Physics, 2020, 59, 105004.	1.5	6
209	New possibility of magnetic ripple shielding for specific heat measurements in hybrid magnets. Cryogenics, 1988, 28, 614-616.	1.7	5
210	High-resolution angle-resolved photoemission spectroscopy of the momentum dependence of the superconducting gap inBi2Sr2CaCu2O8. Physical Review B, 1996, 53, 14055-14057.	3.2	5
211	Longitudinal Josephson plasma: A new aspect of superconductivity. Physica B: Condensed Matter, 1997, 239, 123-127.	2.7	5
212	BSCCO Superconductors: Hole-Like Fermi Surface and Doping Dependence of the Gap Function. Journal of Low Temperature Physics, 1999, 117, 365-369.	1.4	5
213	Properties of Ca-doped Bi2+Sr2â^'CuO6+. Physica C: Superconductivity and Its Applications, 2010, 470, S193-S194.	1.2	5
214	Design and characterization of microstrip patch antennas for high-T _c superconducting terahertz emitters. Optics Express, 2021, 29, 16980.	3.4	5
215	Non-linear transport phenomena along the c-axis in single crystalline Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 1994, 235-240, 3275-3276.	1.2	4
216	Josephson plasma resonance in the vortex state of high temperature superconductors. European Physical Journal D, 1996, 46, 3203-3210.	0.4	4

#	Article	IF	Citations
217	Longitudinal Josephson plasma excitation in vortex state of Bi2Sr2CaCu2O8+δ. European Physical Journal D, 1996, 46, 1625-1626.	0.4	4
218	Direct evidence for the STM observation of CuO2 plane in Bi2Sr2CaCu2O8 + x and possibility of new tunnel transistor operation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 41, 93-97.	3.5	4
219	The novel electrodynamics of combined pancake and Josephson vortex lattice. Physica C: Superconductivity and Its Applications, 2001, 357-360, 597-600.	1.2	4
220	Effect of pressure on the superconductivity of RuSm1.4Ce0.6Sr2Cu2O10. Physica B: Condensed Matter, 2002, 312-313, 88-90.	2.7	4
221	Structure phase transition in FeSr2YCu2O6+Î'. Physica B: Condensed Matter, 2006, 385-386, 561-563.	2.7	4
222	Universality of Low-Energy Mass Renormalization in the Superconducting State of Hole-Doped High-Tc Superconductors. Journal of the Physical Society of Japan, 2007, 76, 103707.	1.6	4
223	Vortex states in mesoscopic single crystals Bi2Sr2CaCu2O8+ $\hat{\Gamma}$ in high magnetic fields. Physica C: Superconductivity and Its Applications, 2009, 469, 1119-1121.	1.2	4
224	Inhomogeneity of initial flux penetration in MgB2 single crystals. Physica C: Superconductivity and Its Applications, 2010, 470, S932-S934.	1.2	4
225	Study of Radiation Characteristics of Intrinsic Josephson Junction Terahertz Emitters with Different Thickness of Bi2Sr2CaCu2O8+δCrystals. Materials, 2021, 14, 1135.	2.9	4
226	Fabrication of Bi $\{2\}$ Sr $\{2\}$ CaCu $\{2\}$ SO $\{2\}$ SO $\{8+x\}$ S < i > ab < /i > -Plane Josephson Junctions by a Focused Helium Ion Beam. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-4.	1.7	4
227	Investigation of wet etching solutions and method for thicker stand alone type of mesa structures of Bi2212 single crystals. Japanese Journal of Applied Physics, 2021, 60, 126501.	1.5	4
228	Magnetic-field-induced non-linear effects of Josephson coupled superconductor Bi2Sr2CaCu2O8+?. Journal of Superconductivity and Novel Magnetism, 1995, 8, 461-464.	0.5	3
229	Flux dynamics and c-axis resistive dissipation in the mixed state of high-temperature superconductors The case of (La1â^'xSrx)2CuO4. Physica C: Superconductivity and Its Applications, 1995, 248, 97-107.	1.2	3
230	Lorentz force independent out-of-plane resistive dissipation in single crystalline La1.86Sr0.14CuO4. Solid State Communications, 1995, 93, 933-937.	1.9	3
231	High-field resistivity along the c-axis of single crystalline Bi2Sr2CaCu2O8 + \hat{l} . Physica B: Condensed Matter, 1996, 216, 269-273.	2.7	3
232	Current Distribution in the Quantum Hall Regime Observed in a Distributed Magnetic Field. Journal of the Physical Society of Japan, 1997, 66, 413-418.	1.6	3
233	Novel angular dependence of vortex melting transition in single crystal Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1181-1182.	1.2	3
234	TEMPERATURE DEPENDENCE OF JOSEPHSON PLASMA MODES IN Bi2Sr2CaCu2O8+δ NEAR Tc. International Journal of Modern Physics B, 2000, 14, 547-554.	2.0	3

#	Article	IF	CITATIONS
235	Elasticity of combined pancake and Josephson vortex lattice. Physica C: Superconductivity and Its Applications, 2002, 378-381, 580-583.	1.2	3
236	Lanthanoid substitution in Sr2YCu2FeO6+ \hat{l} system. Physica C: Superconductivity and Its Applications, 2003, 388-389, 375-376.	1.2	3
237	Phase diagram in highly anisotropic layered superconductors: crossing lattice melting transitions. Physica C: Superconductivity and Its Applications, 2003, 388-389, 721-722.	1.2	3
238	Real-Time Imaging of Vortex–Antivortex Annihilation in Bi2Sr2CaCu2O8+Î′Single Crystals by Low Temperature Scanning Hall Probe Microscopy. Japanese Journal of Applied Physics, 2006, 45, 2246-2250.	1.5	3
239	Experimental validation of a microstrip antenna model for high- <i>T C</i> superconducting terahertz emitters. Journal of Applied Physics, 2021, 129, .	2.5	3
240	Millimeter-Wave-to-Terahertz Superconducting Plasmonic Waveguides for Integrated Nanophotonics at Cryogenic Temperatures. Materials, 2021, 14, 4291.	2.9	3
241	The electrical resistivity of USix(1.8 \hat{a} © $\frac{1}{2}$ x \hat{a} © $\frac{1}{2}$ 2.0). Journal of the Less Common Metals, 1987, 127, 281-284.	0.8	2
242	Macroscopic quantum phenomena in point contacts with high-Tcsuperconducting material. Physica Scripta, 1988, 37, 840-842.	2.5	2
243	Magnetic anisotropy of layered superconducting oxide Bi2Sr2CaCu2O8+Î' single crystals. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1857-1858.	1.2	2
244	Bi-2223/Bi-2234 superlattice: its structural analysis and superconducting transition temperature. , 1994, , .		2
245	Vortex dynamics in La1.86Sr0. 14CuO4studied by magnetoresistivity. Philosophical Magazine Letters, 1995, 71, 169-177.	1.2	2
246	Josephson plasma resonance in the vortex state of high temperature superconductors. European Physical Journal D, 1996, 46, 1637-1638.	0.4	2
247	Phonon anomalies in YNi2 11B2C. Journal of Low Temperature Physics, 1996, 105, 1635-1640.	1.4	2
248	Renneret al.Reply:. Physical Review Letters, 1999, 82, 3726-3726.	7.8	2
249	Anomalous angular dependence of vortex melting transition in single crystal Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1301-1302.	1.2	2
250	PROXIMITY OF THE METAL-INSULATOR/MAGNETIC TRANSITION AND ITS IMPACT ON THE ONE-ELECTRON SPECTRAL FUNCTION: A DOPING-DEPENDENT ARPES STUDY. International Journal of Modern Physics B, 2000, 14, 3596-3601.	2.0	2
251	Spin gap and superconducting fluctuations in Bi2Sr2CaCu2O8+ \hat{l} probed by 63Cu NMR. Journal of Physics and Chemistry of Solids, 2001, 62, 167-170.	4.0	2
252	The effect of pressure on the superconductivity and magnetism of RuSr2GdCu2O8. Journal of Physics Condensed Matter, 2002, 14, 10747-10751.	1.8	2

#	Article	IF	CITATIONS
253	Influence of force-free current on vortex lattice melting transition. Physica C: Superconductivity and Its Applications, 2002, 378-381, 495-498.	1.2	2
254	Zn-substitution effects on the low-energy quasiparticles in Bi2Sr2CaCu2O8+ \hat{l} ′ studied by angle-resolved photoemission spectroscopy. Journal of Physics and Chemistry of Solids, 2002, 63, 1069-1072.	4.0	2
255	Vortex phases in single crystals of Bi2Sr2CaCu2O8+ \hat{l} near ab-plane studied by c-axis and in-plane resistivity measurements. Physica C: Superconductivity and Its Applications, 2003, 388-389, 757-758.	1.2	2
256	High-resolution angle-resolved photoemission study of impurity-substituted Bi2Sr2CaCu2O8+δ. Physica B: Condensed Matter, 2004, 351, 280-282.	2.7	2
257	Size dependence of the vortex states in mesoscopic superconductors. Physica C: Superconductivity and Its Applications, 2006, 445-448, 253-256.	1.2	2
258	The radio-frequency impedance of individual intrinsic Josephson junctions. Applied Physics Letters, 2009, 95, .	3.3	2
259	Numerical Study of Radiation Pattern from Intrinsic Josephson Junctions Attached to Finite Size Substrates. Journal of Physics: Conference Series, 2012, 400, 022002.	0.4	2
260	An analysis of three dimensional radiation patterns from intrinsic Josephson junctions with hot spot. Physica C: Superconductivity and Its Applications, 2013, 491, 35-39.	1.2	2
261	Surface Observation and Magnetism of Oil-Extracted Botryococcus braunii Residues before and after Carbonization. Journal of Carbon Research, 2018, 4, 10.	2.7	2
262	Antiferromagnetic Resonance in CuCl2·2NC5H5 below 1 K. Journal of the Physical Society of Japan, 1979, 46, 45-52.	1.6	1
263	Electron Spin Resonance in CuSO45H2O down to 100 mK. Journal of the Physical Society of Japan, 1988, 57, 4366-4374.	1.6	1
264	Magnetization behavior of single crystalline Bi2Sr2CaCu2Oy above 60 K. Physica C: Superconductivity and Its Applications, 1993, 212, 6-18.	1.2	1
265	Structural certification and superconducting properties in artificially layered Bi2Sr2Canâ~'1CunO4+2n/Bi2Sr2CaÅ"â~'1CuÅ"O4+2Å" superlattice. Physica B: Condensed Matter, 1994, 194-196 2307-2308.	,2.7	1
266	Correlated disorder and scaling in single crystals of BSCCO 2212. European Physical Journal D, 1996, 46, 1685-1686.	0.4	1
267	Effect of columnar defects on the vortex dynamics in BSCCO 2212 single crystals. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2187-2188.	1.2	1
268	Collective electromagnetic wave excitation in Bi2Sr2CaCu2O8+ $\hat{\Gamma}$ in magnetic field nearly parallel to the CuO2-planes. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2429-2430.	1.2	1
269	Relaxation of local magnetization of single-crystalline Bi2Sr2CaCu2O8 at low temperatures. Physica C: Superconductivity and Its Applications, 1998, 298, 289-298.	1.2	1
270	CHANGES IN SUPERCONDUCTING GAP ANISOTROPY WITH DOPING AND IMPLICATIONS FOR THE PENETRATION DEPTH. International Journal of Modern Physics B, 1999, 13, 3709-3711.	2.0	1

#	Article	IF	CITATIONS
271	Josephson plasma resonance in Bi2Sr2CaCu2O8+ \hat{l} under parallel magnetic field. Journal of Low Temperature Physics, 1999, 117, 611-615.	1.4	1
272	Systematic study of Josephson plasma resonance in Bi2Sr2CaCu2O8+Î′ with columnar defects. Physica B: Condensed Matter, 2000, 284-288, 881-882.	2.7	1
273	Weak pinning phenomena in liquid state in Bi2Sr2CaCu2O8+Î′ with columnar defects. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1133-1134.	1.2	1
274	Vortex dynamics in low magnetic fields in single crystals Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1273-1274.	1.2	1
275	High-resolution angle-resolved photoemission study of Pb-substituted Bi2201. Journal of Physics and Chemistry of Solids, 2001, 62, 157-161.	4.0	1
276	Free energy of vortex system beyond the elastic approximation. Physica C: Superconductivity and Its Applications, 2001, 357-360, 601-603.	1.2	1
277	Josephson plasma resonance in solid and glass phases of Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 2001, 362, 234-238.	1.2	1
278	Low Energy Excitation in Bi2Sr2Can-1CunO2n+4 (n = $1-3$) Studied by High-Resolution Arpes. International Journal of Modern Physics B, 2003, 17, 3554-3558.	2.0	1
279	Experimental study on giant vortex and multivortex states in mesoscopic superconductors. Physica C: Superconductivity and Its Applications, 2006, 437-438, 122-126.	1.2	1
280	Electronic structure of impurity-substituted Bi2Sr2CaCu2O8+δ studied by angle-resolved photoemission spectroscopy. Journal of Physics and Chemistry of Solids, 2006, 67, 271-273.	4.0	1
281	Single crystal growth of Bi2Sr2Ca2Cu3O10+Î' and physical properties. Physica C: Superconductivity and Its Applications, 2007, 460-462, 60-61.	1.2	1
282	Geometry dependent resistivity behavior in mesoscopic Bi2Sr2CaCu2O8+ \hat{l} single crystals. Physica C: Superconductivity and Its Applications, 2011, 471, 787-789.	1.2	1
283	Magneto-resistance study of AFe _{2As_{2 (A = Sr, Ba) iron-based compounds. International Journal of Nanotechnology, 2014, 11, 403.}}	0.2	1
284	Transport and structural properties of Cu _{0.25} Bi ₂ (Te <i>>sub>x</i> Se _{1â^'} <i>_x</i>) _{3<}	/su b .:ธ(<i>x</i>	
285	Anomalous field dependent heat capacity in UPt3 below 1 K. Journal of Alloys and Compounds, 1994, 207-208, 337-339.	5.5	0
286	Arpes studies in the normal and superconducting state of Bi2Sr2CaCu2O8. Journal of Physics and Chemistry of Solids, 1995, 56, 1863-1864.	4.0	0
287	Phenomenological model for thecâ€axis resistive dissipation in La2â^'xSrxCuO4as a function of temperature, magnetic field, and its orientation. Journal of Applied Physics, 1995, 77, 5278-5281.	2.5	0
288	A scaling for thec-axis resistivity of La1.86Sr0.14CuO4 as a function of temperature, field and field orientation. Applied Physics A: Materials Science and Processing, 1996, 62, 73-76.	2.3	0

#	Article	IF	CITATIONS
289	<title>ARPES studies of the superconducting gap in high-temperature superconductors</title> ., 1996, 2696, 496.		O
290	Crystal growth and electrical resistivity in magnetic fields in single crystalline Nd2â^'x Ce x CuO4â^'Î'. European Physical Journal D, 1996, 46, 1489-1490.	0.4	0
291	Microwave response in the vortex state of Bi2Sr2CaCu2O8+ \hat{l} . Physica C: Superconductivity and Its Applications, 1996, 263, 457-460.	1.2	0
292	Interlayer Josephson coupling in the vortex solid state of Bi2Sr2CaCu2O8+δfrom Josephson plasma resonance. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2221-2222.	1.2	0
293	Shubnikov-de Haas oscillation and magnetoresistance in YNi2B2C. Solid State Communications, 1997, 103, 5-7.	1.9	0
294	Superconducting Plasma Phenomena in Josephson Coupled High Tc Superconductors. ACS Symposium Series, 1999, , 245-277.	0.5	0
295	Josephson plasma mode in fields parallel to layers of Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1173-1174.	1.2	0
296	High-resolution photoemission study of FeSr2YCu2O7+δ. Journal of Physics and Chemistry of Solids, 2002, 63, 2329-2332.	4.0	0
297	Superconducting coherent quasiparticle weight in high-Tc superconductor from angle-resolved photoemission. Journal of Physics and Chemistry of Solids, 2002, 63, 2135-2139.	4.0	0
298	Suppression of surface barriers in single crystals of Bi2Sr2CaCu2O8+Î' by in-plane magnetic fields. Physica C: Superconductivity and Its Applications, 2003, 388-389, 759-760.	1.2	0
299	Experimental Distinction Between Giant Vortex and Multivortex States in Mesoscopic Superconductors. AIP Conference Proceedings, 2006, , .	0.4	0
300	Many-body interactions in Bi-based high-Tc cuprates studied by angle-resolved photoemission spectroscopy. Journal of Physics and Chemistry of Solids, 2006, 67, 628-631.	4.0	0
301	Vortex phases in magnetic fields near ab-plane in Bi2Sr2CaCu2O8+ single crystal. Physica C: Superconductivity and Its Applications, 2010, 470, S790-S792.	1.2	0
302	Crossing vortex lattice and lock-in vortex state in mesoscopic Bi2Sr2CaCu2O8+ crystal. Physica C: Superconductivity and Its Applications, 2010, 470, S793-S794.	1.2	0
303	THz LASER using high-Tc superconductor Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8+] Mesa Structures., 2012,,.		0
304	Pairing Symmetry and Magnetic Relaxation in Topological Superconductor Cu _x Bi ₂ Se ₃ . Journal of Physics: Conference Series, 2012, 400, 022013.	0.4	0
305	Crossover from crossing to tilted vortex phase in Bi2Sr2CaCu2O8+δ single crystals near ab-plane. Physica C: Superconductivity and Its Applications, 2013, 484, 77-80.	1.2	0
306	Isovalent Substitution Effect of P to as on Magnetic Characteristics of EuFe2(As1â^'xPx)2 Single Crystals. Physics Procedia, 2015, 75, 192-199.	1.2	0

#	Article	IF	CITATIONS
307	High-resolution Thermal Micro-imaging Using Europium Chelate Luminescent Coatings. Journal of Visualized Experiments, 2017, , .	0.3	0
308	Stacked Intrinsic Josephson Junction Bi2 Sr2 CaCu2 O8 Terahertz Sources: Design Issues for Achieving High Power Output Close to Tc. , 2020, , .		0
309	In-plane Field Contribution for Josephson Plasma Mode in Under-doped Bi2Sr2CaCu2O8+δ., 2000, , 401-403.		O
310	COALESCENCE AND REARRANGEMENT OF VORTICES IN MESOSCOPIC SUPERCONDUCTORS., 2006,,.		0
311	Superconductivity at 93 K in Single-Phase YBa2Cu3O7. Japanese Journal of Applied Physics, 1987, 26, 1151.	1.5	O
312	Synthesis and Characterization of YNi2B2C Thin Films. , 1995, , 971-974.		0
313	Anomalies of The c-Axis Resistivity in Single Crystalline Bi2Sr2CaCu2O8+δ., 1996, , 595-598.		0
314	Boson Peak Analysis of Glucose Polymers via Terahertz Time-Domain Spectroscopy. , 2020, , .		0