Graham C Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7132163/publications.pdf

Version: 2024-02-01

150 papers

4,326 citations

35 h-index 56 g-index

162 all docs 162 docs citations

times ranked

162

3479 citing authors

#	Article	IF	CITATIONS
1	Detection of a local <i>Mycobacterium bovis</i> reservoir using cattle surveillance data. Transboundary and Emerging Diseases, 2022, 69, .	3.0	4
2	Phylodynamic analysis of an emergent <i>Mycobacterium bovis</i> outbreak in an area with no previously known wildlife infections. Journal of Applied Ecology, 2022, 59, 210-222.	4.0	19
3	Update of model for wild ruminant abundance based on occurrence and first models based on hunting yield at European scale. EFSA Supporting Publications, 2022, 19, .	0.7	1
4	Simulating partial vaccine protection: BCG in badgers. Preventive Veterinary Medicine, 2022, 204, 105635.	1.9	4
5	Camera trap distance sampling for terrestrial mammal population monitoring: lessons learnt from a <scp>UK</scp> case study. Remote Sensing in Ecology and Conservation, 2022, 8, 717-730.	4.3	11
6	Simulating the next steps in badger control for bovine tuberculosis in England. PLoS ONE, 2021, 16, e0248426.	2.5	3
7	The Verification of Ecological Citizen Science Data: Current Approaches and Future Possibilities. Citizen Science: Theory and Practice, 2021, 6, 12.	1.2	10
8	Update of model for wild boar abundance based on hunting yield and first models based on occurrence for wild ruminants at European scale. EFSA Supporting Publications, 2021, 18, 6825E.	0.7	5
9	Estimating wildlife vaccination coverage using genetic methods. Preventive Veterinary Medicine, 2020, 183, 105096.	1.9	0
10	Improving models of wild boar hunting yield distribution: new insights for predictions at fine spatial resolution. EFSA Supporting Publications, 2020, 17, 1980E.	0.7	1
11	Update of occurrence and hunting yieldâ€based data models for wild boar at European scale: new approach to handle the bioregion effect. EFSA Supporting Publications, 2020, 17, 1871E.	0.7	6
12	Between roost contact is essential for maintenance of European bat lyssavirus type-2 in Myotis daubentonii bat reservoir: †The Swarming Hypothesis'. Scientific Reports, 2020, 10, 1740.	3.3	9
13	Validation and inference of highâ€resolution information (downscaling) of ENETwild abundance model for wild boar. EFSA Supporting Publications, 2020, 17, 1787E.	0.7	5
14	Modelling Spatial and Temporal Patterns of African Swine Fever in an Isolated Wild Boar Population to Support Decision-Making. Frontiers in Veterinary Science, 2020, 7, 154.	2.2	16
15	ENETwild modelling of wild boar distribution and abundance: update of occurrence and hunting dataâ€based models. EFSA Supporting Publications, 2019, 16, 1674E.	0.7	14
16	Evaluation of a single-shot gonadotropin-releasing hormone (GnRH) immunocontraceptive vaccine in captive badgers. European Journal of Wildlife Research, 2019, 65, 1.	1.4	8
17	The risk of foot-and-mouth disease becoming endemic in a wildlife host is driven by spatial extent rather than density. PLoS ONE, 2019, 14, e0218898.	2.5	10
18	Modeling current and potential distributions of mammal species using presenceâ€only data: A case study on British deer. Ecology and Evolution, 2019, 9, 8724-8735.	1.9	22

#	Article	IF	CITATIONS
19	Harmonization of the use of hunting statistics for wild boar density estimation in different study areas. EFSA Supporting Publications, 2019, 16, 1706E.	0.7	14
20	Wild boar in focus: initial model outputs of wild boar distribution based on occurrence data and identification of priority areas for data collection. EFSA Supporting Publications, 2019, 16, 1533E.	0.7	5
21	Science-based wildlife disease response. Science, 2019, 364, 943-944.	12.6	42
22	ENETwild modelling of wild boar distribution and abundance: initial model output based on hunting data and update of occurrenceâ€based models. EFSA Supporting Publications, 2019, 16, 1629E.	0.7	7
23	Careful considerations are required when analysing mammal citizen science data – A response to Massimino et al. Biological Conservation, 2019, 232, 274-275.	4.1	5
24	Evaluating a mixed abiotic–biotic model for the distribution and host contact rates of an arthropod vector of pathogens: An example with Ixodes ricinus (Ixodidae). Microbial Risk Analysis, 2019, 13, 100067.	2.3	2
25	Predicting population trends using citizen science data: do subsampling methods produce reliable estimates for mammals?. European Journal of Wildlife Research, 2018, 64, 1.	1.4	4
26	Wild boar in focus: Review of existing models on spatial distribution and density of wild boar and proposal for next steps. EFSA Supporting Publications, 2018, 15, 1490E.	0.7	10
27	Modeling as a Decision Support Tool for Bovine TB Control Programs in Wildlife. Frontiers in Veterinary Science, 2018, 5, 276.	2.2	5
28	Economical crowdsourcing for camera trap image classification. Remote Sensing in Ecology and Conservation, 2018, 4, 361-374.	4.3	41
29	Analysis of hunting statistics collection frameworks for wild boar across Europe and proposals for improving the harmonisation of data collection. EFSA Supporting Publications, 2018, 15, 1523E.	0.7	10
30	A citizen science based survey method for estimating the density of urban carnivores. PLoS ONE, 2018, 13, e0197445.	2.5	21
31	Guidance on estimation of wild boar population abundance and density: methods, challenges, possibilities. EFSA Supporting Publications, 2018, 15, 1449E.	0.7	38
32	Evaluating European Food Safety Authority Protection Goals for Honeybees (<i>Apis mellifera</i>): What Do They Mean for Pollination?. Integrated Environmental Assessment and Management, 2018, 14, 750-758.	2.9	9
33	The role of modelling in predicting rabies and understanding the impact of control measures. OIE Revue Scientifique Et Technique, 2018, 37, 551-557.	1.2	1
34	Quantifying the bias in density estimated from distance sampling and camera trapping of unmarked individuals. Ecological Modelling, 2017, 350, 79-86.	2.5	31
35	Simulating control of a focal wildlife outbreak of Echinococcus multilocularis. Veterinary Parasitology, 2017, 237, 47-56.	1.8	9
36	Passive surveillance of United Kingdom bats for lyssaviruses (2005–2015). Epidemiology and Infection, 2017, 145, 2445-2457.	2.1	12

#	Article	IF	CITATIONS
37	A first estimate of the structure and density of the populations of pet cats and dogs across Great Britain. PLoS ONE, 2017, 12, e0174709.	2.5	30
38	A systematic approach to estimate the distribution and total abundance of British mammals. PLoS ONE, 2017, 12, e0176339.	2.5	45
39	Model of Selective and Non-Selective Management of Badgers (Meles meles) to Control Bovine Tuberculosis in Badgers and Cattle. PLoS ONE, 2016, 11, e0167206.	2.5	17
40	Demographic buffering and compensatory recruitment promotes the persistence of disease in a wildlife population. Ecology Letters, 2016, 19, 443-449.	6.4	45
41	Population genetic structure of the red fox (Vulpes vulpes) in the UK. Mammal Research, 2015, 60, 9-19.	1.3	21
42	First report of Trichinella pseudospiralis in a red fox in mainland Britain. Veterinary Parasitology, 2015, 208, 259-262.	1.8	8
43	Towards the European eradication of the North American ruddy duck. Biological Invasions, 2015, 17, 9-12.	2.4	22
44	Population genetic structure of serotine bats (Eptesicus serotinus) across Europe and implications for the potential spread of bat rabies (European bat lyssavirus EBLV-1). Heredity, 2015, 115, 83-92.	2.6	18
45	Changes in the Distribution of Red Foxes (Vulpes vulpes) in Urban Areas in Great Britain: Findings and Limitations of a Media-Driven Nationwide Survey. PLoS ONE, 2014, 9, e99059.	2.5	81
46	Mortality trajectory analysis reveals the drivers of sex-specific epidemiology in natural wildlife–disease interactions. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140526.	2.6	24
47	Clustering, persistence and control of a pollinator brood disease: epidemiology of <scp>A</scp> merican foulbrood. Environmental Microbiology, 2014, 16, 3753-3763.	3.8	16
48	Demographic variation in the $\langle scp \rangle U \langle scp \rangle$. $\langle scp \rangle K \langle scp \rangle$. serotine bat: filling gaps in knowledge for management. Ecology and Evolution, 2014, 4, 3820-3829.	1.9	6
49	Using an individual-based model to select among alternative foraging strategies of woodpigeons: Data support a memory-based model with a flocking mechanism. Ecological Modelling, 2014, 280, 89-101.	2.5	13
50	Migration and dispersal patterns of bats and their influence on genetic structure. Mammal Review, 2013, 43, 183-195.	4.8	98
51	Multi-state modelling reveals sex-dependent transmission, progression and severity of tuberculosis in wild badgers. Epidemiology and Infection, 2013, 141, 1429-1436.	2.1	50
52	Oversight of the police and residual complaints dilemmas: independence, effectiveness and accountability deficits in the United Kingdom. Police Practice and Research, 2013, 14, 92-103.	1.5	21
53	Heterogeneity in the risk of Mycobacterium bovis infection in European badger (Meles meles) cubs. Epidemiology and Infection, 2013, 141, 1458-1466.	2.1	8
54	Long-term temporal trends and estimated transmission rates for <i>Mycobacterium bovis </i> in an undisturbed high-density badger (<i>Meles meles </i>) population. Epidemiology and Infection, 2013, 141, 1445-1456.	2.1	72

#	Article	IF	CITATIONS
55	Uptake of buried baits by badgers: Implications for rabies control in Great Britain and the delivery of an oral TB vaccine. Wildlife Society Bulletin, 2012, 36, 220-225.	1.6	3
56	Farm-scale risk factors for bovine tuberculosis incidence in cattle herds during the Randomized Badger Culling Trial. Epidemiology and Infection, 2012, 140, 219-230.	2.1	13
57	A diagnostic study of Echinococcus multilocularis in red foxes (Vulpes vulpes) from Great Britain. Veterinary Parasitology, 2012, 190, 447-453.	1.8	25
58	Emergency rabies control in a community of two high-density hosts. BMC Veterinary Research, 2012, 8, 79.	1.9	11
59	Comparing Badger (Meles meles) Management Strategies for Reducing Tuberculosis Incidence in Cattle. PLoS ONE, 2012, 7, e39250.	2.5	21
60	BCG Vaccination Reduces Risk of Tuberculosis Infection in Vaccinated Badgers and Unvaccinated Badger Cubs. PLoS ONE, 2012, 7, e49833.	2.5	93
61	Predicting the status of wild deer as hosts of Mycobacterium bovis infection in Britain. European Journal of Wildlife Research, 2012, 58, 127-135.	1.4	12
62	Defining Environmental Risk Assessment Criteria for Genetically Modified (GM) Mammals and Birds to be placed on the EU market. EFSA Supporting Publications, 2011, 8, 107E.	0.7	0
63	Bat population genetics and Lyssavirus presence in Great Britain. Epidemiology and Infection, 2011, 139, 1463-1469.	2.1	19
64	Bayesian estimation of the true prevalence of Mycobacterium avium subsp. paratuberculosis infection in Cypriot dairy sheep and goat flocks. Small Ruminant Research, 2011, 95, 174-178.	1.2	18
65	Towards a standardised surveillance for Trichinella in the European Union. Preventive Veterinary Medicine, 2011, 99, 148-160.	1.9	59
66	Bacillus Calmette-Guérin vaccination reduces the severity and progression of tuberculosis in badgers. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1913-1920.	2.6	125
67	Development of harmonised schemes for the monitoring and reporting of Trichinella in animals and foodstuffs in the European Union. EFSA Supporting Publications, 2010, 7, 35E.	0.7	2
68	Population genetic structure of the Daubenton's bat (Myotis daubentonii) in western Europe and the associated occurrence of rabies. European Journal of Wildlife Research, 2010, 56, 67-81.	1.4	32
69	Assessing biogeographical relationships of ecologically related species using favourability functions: a case study on British deer. Diversity and Distributions, 2010, 16, 515-528.	4.1	44
70	Development of harmonised schemes for the monitoring and reporting of Echinococcus in animals and foodstuffs in the European Union. EFSA Supporting Publications, 2010, 7, 36E.	0.7	7
71	The use of immunocontraception to improve rabies eradication in urban dog populations. Wildlife Research, 2010, 37, 676.	1.4	38
72	TARGETED SURVEILLANCE FOR EUROPEAN BAT LYSSAVIRUSES IN ENGLISH BATS (2003–06). Journal of Wildlife Diseases, 2009, 45, 1030-1041.	0.8	36

#	Article	IF	CITATIONS
73	COST-BENEFIT ANALYSIS MODEL OF BADGER (MELES MELES) CULLING TO REDUCE CATTLE HERD TUBERCULOSIS BREAKDOWNS IN BRITAIN, WITH PARTICULAR REFERENCE TO BADGER PERTURBATION. Journal of Wildlife Diseases, 2009, 45, 1062-1088.	0.8	19
74	ESTIMATING THE RISK OF CATTLE EXPOSURE TO TUBERCULOSIS POSED BY WILD DEER RELATIVE TO BADGERS IN ENGLAND AND WALES. Journal of Wildlife Diseases, 2009, 45, 1104-1120.	0.8	23
7 5	Using the Mahalanobis distance statistic with unplanned presenceâ€only survey data for biogeographical models of species distribution and abundance: a case study of badger setts. Journal of Biogeography, 2009, 36, 845-853.	3.0	31
76	Report of Trichinella spiralis in a red fox (Vulpes vulpes) in Northern Ireland. Veterinary Parasitology, 2009, 159, 300-303.	1.8	14
77	Impact of colour digital photography on pathologists' orientation of resected specimens: a prospective pilot study. British Journal of Oral and Maxillofacial Surgery, 2009, 47, 218-219.	0.8	2
78	The Science of Wildlife Disease Management. , 2009, , 1-8.		11
79	Modelling Disease Dynamics and Management Scenarios. , 2009, , 53-77.		3
80	Options for the Control of Disease 1: Targeting the Infectious or Parasitic Agent., 2009, , 97-120.		13
81	Wildlife Disease Surveillance and Monitoring. , 2009, , 187-213.		35
82	An Economic Perspective on Wildlife Disease Management. , 2009, , 79-96.		1
83	Options for the Control of Disease 2: Targeting Hosts. , 2009, , 121-146.		33
84	Risk Assessment and Contingency Planning for Exotic Disease Introductions. , 2009, , 169-185.		3
85	Management of Disease in Wild Mammals. , 2009, , .		54
86	RABIES IN NORTHEASTERN EUROPEâ€"THE THREAT FROM INVASIVE RACCOON DOGS. Journal of Wildlife Diseases, 2009, 45, 1121-1137.	0.8	37
87	Detection and surveillance for animal trichinellosis in GB. Veterinary Parasitology, 2008, 151, 233-241.	1.8	20
88	Managing wildlife populations with uncertainty: cormorants <i>Phalacrocorax carbo</i> . Journal of Applied Ecology, 2008, 45, 1675-1682.	4.0	23
89	Perturbing implications of wildlife ecology for disease control. Trends in Ecology and Evolution, 2008, 23, 53-56.	8.7	66
90	TB policy and the ISG's findings. Veterinary Record, 2007, 161, 633-635.	0.3	13

#	Article	IF	Citations
91	TB policy and the ISG's findings. Veterinary Record, 2007, 161, 535-535.	0.3	1
92	Landscape as a Model: The Importance of Geometry. PLoS Computational Biology, 2007, 3, e200.	3.2	45
93	Acceptance of baits, designed to carry oral rabies vaccines, by foxes in Britain. International Journal of Pest Management, 2007, 53, 323-328.	1.8	4
94	Efficacy of trapping during the initial proactive culls in the randomised badger culling trial. Veterinary Record, 2007, 160, 723-726.	0.3	30
95	Culling-induced social perturbation in Eurasian badgers <i>Meles meles</i> and the management of TB in cattle: an analysis of a critical problem in applied ecology. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2769-2777.	2.6	111
96	A model for the management of the invasive ruddy duck to reduce interbreeding pressure on the white-headed duck. International Journal of Pest Management, 2007, 53, 335-339.	1.8	3
97	Costs and benefits of rabbit control options at the local level. International Journal of Pest Management, 2007, 53, 317-321.	1.8	16
98	Spatial sensitivity of a generic population model, using wild boar (Sus scrofa) as a test case. Ecological Modelling, 2007, 205, 146-158.	2.5	12
99	Bovine tuberculosis infection in wild mammals in the South-West region of England: A survey of prevalence and a semi-quantitative assessment of the relative risks to cattle. Veterinary Journal, 2007, 173, 287-301.	1.7	151
100	A cost–benefit analysis of culling badgers to control bovine tuberculosis. Veterinary Journal, 2007, 173, 302-310.	1.7	23
101	European bat lyssaviruses: Distribution, prevalence and implications for conservation. Biological Conservation, 2006, 131, 193-210.	4.1	37
102	Modelling wildlife rabies: Transmission, economics, and conservation. Biological Conservation, 2006, 131, 163-179.	4.1	59
103	A model of ruddy duck Oxyura jamaicensis eradication for the UK. Journal of Applied Ecology, 2005, 42, 546-555.	4.0	36
104	Risk Assessment of UK Skylark Populations Using Life-History and Individual-Based Landscape Models. Ecotoxicology, 2005, 14, 925-936.	2.4	62
105	Case Study Part 1: How to Calculate Appropriate Deterministic Long-Term Toxicity to Exposure Ratios (TERs) for Birds and Mammals. Ecotoxicology, 2005, 14, 877-893.	2.4	20
106	Case Study Part 2: Probabilistic Modelling of Long-term Effects of Pesticides on Individual Breeding Success in Birds and Mammals. Ecotoxicology, 2005, 14, 895-923.	2.4	23
107	Options for the management of bovine tuberculosis transmission from badgers (Meles meles) to cattle: evidence from a long-term study. Mammal Study, 2005, 30, S73-S81.	0.6	11
108	Dietary exposure to chemical migrants from food contact materials: A probabilistic approach. Food Additives and Contaminants, 2005, 22, 907-919.	2.0	35

#	Article	IF	CITATIONS
109	European Bat Lyssavirus in Scottish Bats. Emerging Infectious Diseases, 2005, 11, 572-578.	4.3	59
110	A model of bovine tuberculosis in the badger Meles meles: an evaluation of different vaccination strategies. Journal of Applied Ecology, 2004, 41, 492-501.	4.0	42
111	Detection of antibodies to EBLV-2 in Daubenton's bats in the UK. Veterinary Record, 2004, 154, 245-6.	0.3	8
112	Vaccinating badgers (Meles meles) against Mycobacterium bovis: the ecological considerations. Veterinary Journal, 2003, 166, 43-51.	1.7	48
113	Investigating the spatial dynamics of bovine tuberculosis in badger populations: evaluating an individual-based simulation model. Ecological Modelling, 2003, 167, 139-157.	2.5	32
114	Prevalence of zoonotic important parasites in the red fox (Vulpes vulpes) in Great Britain. Veterinary Parasitology, 2003, 118, 133-142.	1.8	93
115	Analyses of two mute swan populations and the effects of clutch reduction: implications for population management. Journal of Applied Ecology, 2003, 40, 565-579.	4.0	15
116	Application of uncertainty analysis in assessing dietary exposure. Toxicology Letters, 2003, 140-141, 437-442.	0.8	24
117	MODELING CONTROL OF RABIES OUTBREAKS IN RED FOX POPULATIONS TO EVALUATE CULLING, VACCINATION, AND VACCINATION COMBINED WITH FERTILITY CONTROL. Journal of Wildlife Diseases, 2003, 39, 278-286.	0.8	49
118	Developing a census method based on sight counts to estimate rabbit (Oryctolagus cuniculus) numbers. Wildlife Research, 2003, 30, 487.	1.4	19
119	Presence of freeâ€living wild boar <i>Sus scrofa</i> in southern England. Wildlife Biology, 2003, 9, 15-20.	1.4	14
120	Intake estimation of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in salmon: the inclusion of uncertainty. Food Additives and Contaminants, 2002, 19, 770-778.	2.0	9
121	A model of the mite parasite, Varroa destructor, on honeybees (Apis mellifera) to investigate parameters important to mite population growth. Ecological Modelling, 2002, 148, 263-275.	2.5	46
122	A mathematical model for the control of diseases in wildlife populations: culling, vaccination and fertility control. Ecological Modelling, 2002, 150, 45-53.	2.5	81
123	Modelling disease spread in a novel host: rabies in the European badger Meles meles. Journal of Applied Ecology, 2002, 39, 865-874.	4.0	17
124	The role of the Badger (Meles meles) in rabies epizootiology and the implications for Great Britain. Mammal Review, 2002, 32, 12-25.	4.8	25
125	Models of Mycobacterium bovis in wildlife and cattle. Tuberculosis, 2001, 81, 51-64.	1.9	37
126	A model of bovine tuberculosis in the badger Meles meles : an evaluation of control strategies. Journal of Applied Ecology, 2001, 38, 509-519.	4.0	40

#	Article	IF	CITATIONS
127	A model of bovine tuberculosis in the badger Meles meles: the inclusion of cattle and the use of a live test. Journal of Applied Ecology, 2001, 38, 520-535.	4.0	37
128	A preliminary survey for changes in urban Fox (Vulpes vulpes) densities in England and Wales, and implications for rabies control. Mammal Review, 2001, 31, 107-110.	4.8	25
129	The spatio-temporal distribution of Mycobacterium bovis (bovine tuberculosis) infection in a high-density badger population. Journal of Animal Ecology, 2000, 69, 428-441.	2.8	159
130	Factors affecting the abundance of rabbits (Oryctolagus cuniculus) in England and Wales. Journal of Zoology, 2000, 252, 227-238.	1.7	33
131	The effects of bovine tuberculosis (Mycobacterium bovis) on mortality in a badger (Meles meles) population in England. Journal of Zoology, 2000, 250, 389-395.	1.7	64
132	The increase in badger (Meles meles) density at Woodchester Park, south-west England: a review of the implications for disease (Mycobacterium bovis) prevalence. Mammalia, 1999, 63, .	0.7	15
133	Increased mortality of woodpigeoncolumba palumbusfollowing ringing. Ringing and Migration, 1999, 19, 272-274.	0.4	2
134	Long-term study of litter size in relation to population density in rabbits (Oryctolagus cuniculus) in Lincolnshire, England. Journal of Zoology, 1998, 246, 347-350.	1.7	8
135	Movement of badgers (Meles meles) in a high–density population: individual, population and disease effects. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1269-1276.	2.6	119
136	Modelling the Control of Bovine Tuberculosis in Badgers in England: Culling and the Release of Lactating Females. Journal of Applied Ecology, 1997, 34, 1375.	4.0	27
137	An analysis of the form of density dependence in a simulation model of a seasonal breeder undergoing control. Ecological Modelling, 1997, 95, 181-189.	2.5	7
138	Spatial and temporal ordering of events in discrete time cellular automata — An overview. Ecological Modelling, 1997, 96, 305-307.	2.5	7
139	The effect on the woodpigeon (Columba palumbus) of the introduction of oilseed rape into Britain. Agriculture, Ecosystems and Environment, 1997, 61, 113-121.	5.3	19
140	Age and sex bias in samples of wild rabbits, <i>Oryctolagus cuniculus, </i> from wild populations in southern England. New Zealand Journal of Zoology, 1995, 22, 115-121.	1.1	19
141	Modelling bovine tuberculosis in badgers in England: preliminary results. Mammalia, 1995, 59, .	0.7	31
142	Fox Contact Behaviour and Rabies Spread: A Model for the Estimation of Contact Probabilities Between Urban Foxes at Different Population Densities and Its Implications for Rabies Control in Britain. Journal of Applied Ecology, 1995, 32, 693.	4.0	55
143	Modelling rabies control in the UK : the inclusion of vaccination. Mammalia, 1995, 59, .	0.7	14
144	The reproductive productivity of the wild rabbit (Oryctolagus cuniculus) in southern England on sites with different soils. Journal of Zoology, 1995, 237, 411-422.	1.7	28

#	Article	IF	CITATIONS
145	An Evaluation of the Methods Used to Construct Life Tables in Capture-Mark-Recapture Studies. Theoretical Population Biology, 1995, 47, 180-190.	1.1	3
146	Using Leslie Matrices to Determine Wild Rabbit Population Growth and the Potential for Control. Journal of Applied Ecology, 1994, 31, 223.	4.0	41
147	Rabies in urban foxes (Vulpes vulpes) in Britain: the use of a spatial stochastic simulation model to examine the pattern of spread and evaluate the efficacy of different control régimes. Philosophical Transactions of the Royal Society B: Biological Sciences, 1991, 334, 459-479.	4.0	92
148	A Field Trial Evaluating Bait Uptake by an Urban Fox (Vulpes vulpes) Population. Journal of Applied Ecology, 1991, 28, 454.	4.0	55
149	Demography of Two Urban Fox (Vulpes vulpes) Populations. Journal of Applied Ecology, 1987, 24, 75.	4.0	145
150	The Verification of Ecological Citizen Science Data: Current approaches and future possibilities. Biodiversity Information Science and Standards, 0, 5, .	0.0	0