
Jeffrey A Rollins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7132137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and Aggressiveness of Take-All Root Rot Pathogens Isolated from Symptomatic Bermudagrass Putting Greens. Phytopathology, 2022, 112, 811-819.	2.2	4
2	Polyphasic identification and MAT1-2 isolates of Phyllosticta citricarpa in Cuba. European Journal of Plant Pathology, 2022, 162, 995-1003.	1.7	4
3	The C2H2 Transcription Factor SsZFH1 Regulates the Size, Number, and Development of Apothecia in <i>Sclerotinia sclerotiorum</i> . Phytopathology, 2022, 112, 1476-1485.	2.2	2
4	Population Genomics Trace Clonal Diversification and Intercontinental Migration of an Emerging Fungal Pathogen of Boxwood. Phytopathology, 2021, 111, 184-193.	2.2	16
5	Genome sequence of <i>Monilinia vaccinii-corymbosi</i> sheds light on mummy berry disease infection of blueberry and mating type. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	4
6	The infection cushion of <i>Botrytis cinerea</i> : a fungal â€~weapon' of plantâ€biomass destruction. Environmental Microbiology, 2021, 23, 2293-2314.	3.8	48
7	Transcriptional profile of oil palm pathogen, Ganoderma boninense, reveals activation of lignin degradation machinery and possible evasion of host immune response. BMC Genomics, 2021, 22, 326.	2.8	12
8	Molecular Dissection of Perithecial Mating Line Development in Colletotrichum fructicola , a Species with a Nontypical Mating System Featuring Plus-to-Minus Switch and Plus-Minus-Mediated Sexual Enhancement. Applied and Environmental Microbiology, 2021, 87, e0047421.	3.1	13
9	"Jumping Jackâ€: Genomic Microsatellites Underscore the Distinctiveness of Closely Related Pseudoperonospora cubensis and Pseudoperonospora humuli and Provide New Insights Into Their Evolutionary Past. Frontiers in Microbiology, 2021, 12, 686759.	3.5	3
10	Competing sexual-asexual generic names in Agaricomycotina (Basidiomycota) with recommendations for use. IMA Fungus, 2021, 12, 22.	3.8	11
11	Efficient genome editing using endogenous U6 snRNA promoter-driven CRISPR/Cas9 sgRNA in Sclerotinia sclerotiorum. Fungal Genetics and Biology, 2021, 154, 103598.	2.1	7
12	The cAMP-dependent protein kinase A pathway perturbs autophagy and plays important roles in development and virulence of Sclerotinia sclerotiorum. Fungal Biology, 2021, 126, 20-34.	2.5	8
13	Genomic and transcriptomic insights into Raffaelea lauricola pathogenesis. BMC Genomics, 2020, 21, 570.	2.8	6
14	One Clonal Lineage of <i>Calonectria pseudonaviculata</i> Is Primarily Responsible for the Boxwood Blight Epidemic in the United States. Phytopathology, 2020, 110, 1845-1853.	2.2	10
15	Highly Contiguous Genome Resource of <i>Colletotrichum fructicola</i> Generated Using Long-Read Sequencing. Molecular Plant-Microbe Interactions, 2020, 33, 790-793.	2.6	12
16	The Formaldehyde Dehydrogenase SsFdh1 Is Regulated by and Functionally Cooperates with the GATA Transcription Factor SsNsd1 in Sclerotinia sclerotiorum. MSystems, 2019, 4, .	3.8	16
17	Identification and characterization of Septoria steviae as the causal agent of Septoria leaf spot disease of stevia in North Carolina. Mycologia, 2019, 111, 456-465.	1.9	7
18	Coccinonectria pachysandricola, Causal Agent of a New Foliar Blight Disease of Sarcococca hookeriana. Plant Disease, 2019, 103, 1337-1346.	1.4	8

JEFFREY A ROLLINS

#	Article	IF	CITATIONS
19	Thermal sensitivity of <i>Calonectria henricotiae</i> and <i>Calonectria pseudonaviculata</i> conidia and microsclerotia. Mycologia, 2018, 110, 546-558.	1.9	17
20	The GATAâ€ŧype IVb zincâ€finger transcription factor SsNsd1 regulates asexual–sexual development and appressoria formation in <i>Sclerotinia sclerotiorum</i> . Molecular Plant Pathology, 2018, 19, 1679-1689.	4.2	75
21	Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum. MBio, 2018, 9, .	4.1	89
22	Mechanisms of Broad Host Range Necrotrophic Pathogenesis in <i>Sclerotinia sclerotiorum</i> . Phytopathology, 2018, 108, 1128-1140.	2.2	132
23	Pathogenic adaptations of Colletotrichum fungi revealed by genome wide gene family evolutionary analyses. PLoS ONE, 2018, 13, e0196303.	2.5	46
24	An atypical forkheadâ€containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in <i>Sclerotinia sclerotiorum</i> . Molecular Plant Pathology, 2017, 18, 963-975.	4.2	43
25	A Global Perspective on the Population Structure and Reproductive System of <i>Phyllosticta citricarpa</i> . Phytopathology, 2017, 107, 758-768.	2.2	28
26	Comparing Avocado, Swamp Bay, and Camphortree as Hosts of Raffaelea lauricola Using a Green Fluorescent Protein (GFP)-Labeled Strain of the Pathogen. Phytopathology, 2017, 107, 70-74.	2.2	20
27	Sexual Reproduction in the Citrus Black Spot Pathogen, <i>Phyllosticta citricarpa</i> . Phytopathology, 2017, 107, 732-739.	2.2	33
28	Fine-Scale Genetic Structure and Reproductive Biology of the Blueberry Pathogen <i>Monilinia vaccinii-corymbosi</i> . Phytopathology, 2017, 107, 231-239.	2.2	28
29	The Complete Genome Sequence of the Phytopathogenic Fungus Sclerotinia sclerotiorum Reveals Insights into the Genome Architecture of Broad Host Range Pathogens. Genome Biology and Evolution, 2017, 9, 593-618.	2.5	187
30	Laurel Wilt in Natural and Agricultural Ecosystems: Understanding the Drivers and Scales of Complex Pathosystems. Forests, 2017, 8, 48.	2.1	50
31	Revisiting Graduate Student Training to Address Agricultural and Environmental Societal Challenges. Agricultural and Environmental Letters, 2017, 2, 170019.	1.2	7
32	Mating Type and Simple Sequence Repeat Markers Indicate a Clonal Population of <i>Phyllosticta citricarpa</i> in Florida. Phytopathology, 2016, 106, 1300-1310.	2.2	46
33	Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis. Fungal Biology, 2016, 120, 1105-1117.	2.5	25
34	Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales. Fungal Biology, 2016, 120, 603-619.	2.5	56
35	Population Structure of the Blueberry Pathogen <i>Monilinia vaccinii-corymbosi</i> in the United States. Phytopathology, 2015, 105, 533-541.	2.2	10
36	Fungal oxalate decarboxylase activity contributes to <i><scp>S</scp>clerotinia sclerotiorum</i> early infection by affecting both compound appressoria development and function. Molecular Plant Pathology, 2015, 16, 825-836.	4.2	52

JEFFREY A ROLLINS

#	Article	IF	CITATIONS
37	The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen <i>Sclerotinia sclerotiorum</i> . Plant Physiology, 2015, 169, 856-872.	4.8	64
38	Transcriptomic changes in the plant pathogenic fungus Rhizoctonia solani AG-3 in response to the antagonistic bacteria Serratia proteamaculans and Serratia plymuthica. BMC Genomics, 2015, 16, 630.	2.8	97
39	Oxaloacetate acetylhydrolase gene mutants of <i><scp>S</scp>clerotinia sclerotiorum</i> do not accumulate oxalic acid, but do produce limited lesions on host plants. Molecular Plant Pathology, 2015, 16, 559-571.	4.2	110
40	How many fungi make sclerotia?. Fungal Ecology, 2015, 13, 211-220.	1.6	81
41	Draft Genome Sequence of the Plant-Pathogenic Soil Fungus Rhizoctonia solani Anastomosis Group 3 Strain Rhs1AP. Genome Announcements, 2014, 2, .	0.8	49
42	Genomics of Sclerotinia sclerotiorum. , 2014, , 1-17.		1
43	Chemotaxonomy of fungi in the Rhizoctonia solani species complex performing GC/MS metabolite profiling. Metabolomics, 2013, 9, 159-169.	3.0	34
44	Peroxysomal Carnitine Acetyl Transferase Influences Host Colonization Capacity in <i>Sclerotinia sclerotiorum</i> . Molecular Plant-Microbe Interactions, 2013, 26, 768-780.	2.6	22
45	Evidence for Morphological, Vegetative, Genetic, and Mating-Type Diversity in <i>Sclerotinia homoeocarpa</i> . Phytopathology, 2012, 102, 506-518.	2.2	21
46	<i>Sclerotinia sclerotiorum</i> l³-Glutamyl Transpeptidase (Ss-Ggt1) Is Required for Regulating Glutathione Accumulation and Development of Sclerotia and Compound Appressoria. Molecular Plant-Microbe Interactions, 2012, 25, 412-420.	2.6	66
47	Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 2012, 44, 1060-1065.	21.4	840
48	pH modulation differs during sunflower cotyledon colonization by the two closely related necrotrophic fungi <i>Botrytis cinerea</i> and <i>Sclerotinia sclerotiorum</i> . Molecular Plant Pathology, 2012, 13, 568-578.	4.2	51
49	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902
50	Seasonal Prevalence of Species of Binucleate Rhizoctonia Fungi in Growing Medium, Leaf Litter, and Stems of Container-Grown Azalea. Plant Disease, 2011, 95, 705-711.	1.4	9
51	An In Planta Method for Assessing the Role of Basidiospores in Rhizoctonia Foliar Disease of Tomato. Plant Disease, 2010, 94, 515-520.	1.4	32
52	The development-specific ssp1 and ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. Fungal Genetics and Biology, 2010, 47, 531-538.	2.1	32
53	The development-specific protein (Ssp1) fromSclerotinia sclerotiorumis encoded by a novel gene expressed exclusively in sclerotium tissues. Mycologia, 2009, 101, 34-43.	1.9	49
54	Multiâ€factor regulation of pectate lyase secretion byColletotrichum gloeosporioidespathogenic on avocado fruits. Molecular Plant Pathology, 2008, 9, 281-291.	4.2	79

JEFFREY A ROLLINS

#	Article	IF	CITATIONS
55	A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genetics and Biology, 2008, 45, 1265-1276.	2.1	55
56	Transmission of the M2 double-stranded RNA in <i>Rhizoctonia solani</i> anastomosis group 3 (AG-3). Mycologia, 2007, 99, 859-867.	1.9	7
57	Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genetics and Biology, 2007, 44, 521-530.	2.1	94
58	Development of an <i>Agrobacterium tumefaciens</i> -mediated gene disruption method for <i>Sclerotinia sclerotiorum</i> . Canadian Journal of Plant Pathology, 2007, 29, 394-400.	1.4	9
59	An activating mutation of the Sclerotinia sclerotiorum pac1 gene increases oxalic acid production at low pH but decreases virulence. Molecular Plant Pathology, 2007, 8, 611-622.	4.2	30
60	Effect of Ammonia Production by Colletotrichum gloeosporioides on pelB Activation, Pectate Lyase Secretion, and Fruit Pathogenicity. Applied and Environmental Microbiology, 2006, 72, 1034-1039.	3.1	62
61	A gene with domains related to transcription regulation is required for pathogenicity in Colletotrichum acutatum causing Key lime anthracnose. Molecular Plant Pathology, 2005, 6, 513-525.	4.2	16
62	Tomato spotted wilt virus on potato in eastern North Carolina. American Journal of Potato Research, 2005, 82, 255-261.	0.9	18
63	Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 2005, 66, 144-159.	2.5	174
64	Characterization and functional analysis of a cAMP-dependent protein kinase A catalytic subunit gene (pka1) in Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology, 2004, 64, 155-163.	2.5	44
65	The Sclerotinia sclerotiorum pac1 Gene Is Required for Sclerotial Development and Virulence. Molecular Plant-Microbe Interactions, 2003, 16, 785-795.	2.6	272
66	Genetic diversity of <i>Rhizoctonia solani</i> AG-3 from potato and tobacco in North Carolina. Mycologia, 2002, 94, 437-449.	1.9	50
67	Genetic structure of populations of <i>Rhizoctonia solani</i> AG-3 on potato in eastern North Carolina. Mycologia, 2002, 94, 450-460.	1.9	31
68	Green Fluorescent Protein Is Lighting Up Fungal Biology. Applied and Environmental Microbiology, 2001, 67, 1987-1994.	3.1	286
69	pH Signaling in Sclerotinia sclerotiorum : Identification of a pacC/RIM1 Homolog. Applied and Environmental Microbiology, 2001, 67, 75-81.	3.1	243
70	Ribosomal DNA systematics of <i>Ceratobasidium</i> and <i>Thanatephorus</i> with <i>Rhizoctonia</i> anamorphs. Mycologia, 2001, 93, 1138-1150.	1.9	126
71	Genetic analysis of cross fertility between two self-sterile strains ofGlomerella graminicola. Mycologia, 2000, 92, 430-435.	1.9	31
72	Genetic Analysis of Cross Fertility between Two Self-Sterile Strains of Glomerella graminicola. Mycologia, 2000, 92, 430.	1.9	29

#	Article	IF	CITATIONS
73	Influence of soil calcium, potassium, and pH on development of leaf tipburn of cabbage in eastern North Carolina. Communications in Soil Science and Plant Analysis, 2000, 31, 259-275.	1.4	6
74	Increase in Endogenous and Exogenous Cyclic AMP Levels Inhibits Sclerotial Development in <i>Sclerotinia sclerotiorum</i> . Applied and Environmental Microbiology, 1998, 64, 2539-2544.	3.1	71