Pascual Campoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7130462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zenithal isotropic object counting by localization using adversarial training. Neural Networks, 2022, 145, 155-163.	5.9	3
2	An aerial/ground robot team for autonomous firefighting in urban GNSS-denied scenarios. , 2022, 2, 241-273.		0
3	Fast Multi-UAV Path Planning for Optimal Area Coverage in Aerial Sensing Applications. Sensors, 2022, 22, 2297.	3.8	25
4	KSF-SLAM: A Key Segmentation Frame Based Semantic SLAM in Dynamic Environments. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105, 1.	3.4	10
5	Perception-Aware Planning for Active SLAM in Dynamic Environments. Remote Sensing, 2022, 14, 2584.	4.0	7
6	WILD HOPPER: A heavy-duty UAV for day and night firefighting operations. Heliyon, 2022, 8, e09588.	3.2	8
7	Autonomous Aerial Robot for High-Speed Search and Intercept Applications. , 2022, 2, 1320-1350.		2
8	Performance Analysis of Localization Algorithms for Inspections in 2D and 3D Unstructured Environments Using 3D Laser Sensors and UAVs. Sensors, 2022, 22, 5122.	3.8	2
9	Distribution of airborne pollen, fungi and bacteria at four altitudes using high-throughput DNA sequencing. Atmospheric Research, 2021, 249, 105306.	4.1	8
10	Altitude Measurement-Based Optimization of the Landing Process of UAVs. Sensors, 2021, 21, 1151.	3.8	4
11	A Robust and Fast Collision-Avoidance Approach for Micro Aerial Vehicles Using a Depth Sensor. Remote Sensing, 2021, 13, 1796.	4.0	5
12	Standard methods for pollen research. Journal of Apicultural Research, 2021, 60, 1-109.	1.5	25
13	Tracking of Unicycle Robots Using Event-Based MPC With Adaptive Prediction Horizon. IEEE/ASME Transactions on Mechatronics, 2020, 25, 739-749.	5.8	39
14	Extensions of the open-source framework Aerostack 3.0 for the development of more interactive flights between UAVs. , 2020, , .		0
15	Editorial: Special Issue for selected papers from IMAV 2019. Unmanned Systems, 2020, 08, 261-262.	3.6	0
16	Bebop 2 Quadrotor as a Platform for Research and Education in Robotics and Control Engineering. , 2020, , .		5
17	Adaptive Inattentional Framework for Video Object Detection With Reward-Conditional Training. IEEE Access, 2020, 8, 124451-124466.	4.2	10
18	Optimal Frontier-Based Autonomous Exploration in Unconstructed Environment Using RGB-D Sensor. Sensors, 2020, 20, 6507.	3.8	23

#	Article	IF	CITATIONS
19	Building the executive system of autonomous aerial robots using the Aerostack open-source framework. International Journal of Advanced Robotic Systems, 2020, 17, 172988142092500.	2.1	3
20	Onboard Detection and Localization of Drones Using Depth Maps. IEEE Access, 2020, 8, 30480-30490.	4.2	33
21	VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems. IEEE Access, 2020, 8, 60704-60718.	4.2	60
22	Robust autonomous flight in cluttered environment using a depth sensor. International Journal of Micro Air Vehicles, 2020, 12, 175682932092452.	1.3	4
23	A Fully-Autonomous Aerial Robot for Search and Rescue Applications in Indoor Environments using Learning-Based Techniques. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 95, 601-627.	3.4	109
24	A Deep Reinforcement Learning Strategy for UAV Autonomous Landing on a Moving Platform. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 93, 351-366.	3.4	133
25	Visual Controllers for Relative Positioning in Indoor Settings. , 2019, , .		1
26	Deep Learning-Based System for Automatic Recognition and Diagnosis of Electrical Insulator Strings. IEEE Access, 2019, 7, 101283-101308.	4.2	73
27	Laser-based Collision Avoidance and Reactive Navigation using RRT* and Signed Distance Field for Multirotor UAVs. , 2019, , .		4
28	An execution control method for the Aerostack aerial robotics framework. Frontiers of Information Technology and Electronic Engineering, 2019, 20, 60-75.	2.6	2
29	Vision-Based Multirotor Following Using Synthetic Learning Techniques. Sensors, 2019, 19, 4794.	3.8	5
30	The Power Line Inspection Software (PoLIS): A versatile system for automating power line inspection. Engineering Applications of Artificial Intelligence, 2018, 71, 293-314.	8.1	35
31	Laser-Based Reactive Navigation for Multirotor Aerial Robots using Deep Reinforcement Learning. , 2018, , .		29
32	Stereo Visual Odometry and Semantics based Localization of Aerial Robots in Indoor Environments. , 2018, , .		8
33	Image-Based Visual Servoing Controller for Multirotor Aerial Robots Using Deep Reinforcement Learning. , 2018, , .		30
34	A Deep Reinforcement Learning Technique for Vision-Based Autonomous Multirotor Landing on a Moving Platform. , 2018, , .		27
35	Drone Detection Using Depth Maps. , 2018, , .		25
36	Attitude estimation using horizon detection in thermal images. International Journal of Micro Air Vehicles, 2018, 10, 352-361.	1.3	10

#	Article	IF	CITATIONS
37	Fast and Robust Flight Altitude Estimation of Multirotor UAVs in Dynamic Unstructured Environments Using 3D Point Cloud Sensors. Aerospace, 2018, 5, 94.	2.2	13
38	Combining 2D to 2D and 3D to 2D Point Correspondences for Stereo Visual Odometry. , 2018, , .		0
39	A Multi-Layered Component-Based Approach for the Development of Aerial Robotic Systems: The Aerostack Framework. Journal of Intelligent and Robotic Systems: Theory and Applications, 2017, 88, 683-709.	3.4	41
40	TML: a language to specify aerial robotic missions for the framework Aerostack. International Journal of Intelligent Computing and Cybernetics, 2017, 10, 491-512.	2.7	9
41	A fully-autonomous aerial robotic solution for the 2016 International Micro Air Vehicle competition. , 2017, , .		10
42	A robust real-time path planner for the collision-free navigation of multirotor aerial robots in dynamic environments. , 2017, , .		9
43	L ₁ adaptive control for Wind gust rejection in quad-rotor UAV wind turbine inspection. , 2017, , .		10
44	Towards fully autonomous landing on moving platforms for rotary Unmanned Aerial Vehicles. , 2017, ,		11
45	A flight altitude estimator for multirotor UAVs in dynamic and unstructured indoor environments. , 2017, , .		12
46	Obstacle Detection System for Small UAVs using ADS-B and Thermal Imaging. Journal of Intelligent and Robotic Systems: Theory and Applications, 2017, 88, 583-595.	3.4	25
47	has been funded by the Eiffel Excellence Scholarship Program of the French Ministry of Foreign Affairs and International Development and Victor Arellano-Quintana has been funded by a scholarship from CONACyT for studies abroad.This work has been partially funded by the European Unions Horizon 2020 research and innovation programme under grant agreement No 644271 AEROARMS.	0.9	11
48	IFAC-PapersOnLine, 2017, 50, 16003-16008. A Review of Deep Learning Methods and Applications for Unmanned Aerial Vehicles. Journal of Sensors, 2017, 2017, 1-13.	1.1	233
49	Vision-Based Steering Control, Speed Assistance and Localization for Inner-City Vehicles. Sensors, 2016, 16, 362.	3.8	14
50	A flexible and dynamic mission planning architecture for UAV swarm coordination. , 2016, , .		50
51	A real-time supervised learning approach for sky segmentation onboard unmanned aerial vehicles. , 2016, , .		4
52	AEROSTACK: An architecture and open-source software framework for aerial robotics. , 2016, , .		49
53	Natural user interfaces for human-drone multi-modal interaction. , 2016, , .		86
54	SIGS: Synthetic Imagery Generating Software for the Development and Evaluation of Vision-based Sense-And-Avoid Systems. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 84, 559-574.	3.4	4

#	Article	IF	CITATIONS
55	FuSeOn: A Low-Cost Portable Multi Sensor Fusion Research Testbed for Robotics. Advances in Intelligent Systems and Computing, 2016, , 57-68.	0.6	1
56	A Reliable Open-Source System Architecture for the Fast Designing and Prototyping of Autonomous Multi-UAV Systems: Simulation and Experimentation. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 84, 779-797.	3.4	49
57	A Vision-based Quadrotor Multi-robot Solution for the Indoor Autonomy Challenge of the 2013 International Micro Air Vehicle Competition. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 84, 601-620.	3.4	13
58	UBRISTES: UAV-Based Building Rehabilitation with Visible and Thermal Infrared Remote Sensing. Advances in Intelligent Systems and Computing, 2016, , 245-256.	0.6	11
59	EVOLUCIÓN HISTÓRICA DE LOS VEHICULOS AEREOS NO TRIPULADOS HASTA LA ACTUALIDAD. Dyna (Spain), 2016, 91, 282-288.	0.2	7
60	MONITORIZACIÓN DEL COMPORTAMIENTO TÉRMICO DE FACHADAS MEDIANTE UAV: APLICACIONES EN LA REHABILITACIÓN DE EDIFICIOS. Dyna (Spain), 2016, 91, 571-577.	0.2	0
61	Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection. Sensors, 2015, 15, 29569-29593.	3.8	101
62	Towards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers. Sensors, 2015, 15, 31362-31391.	3.8	73
63	Efficient visual odometry and mapping for Unmanned Aerial Vehicle using ARM-based stereo vision pre-processing system. , 2015, , .		28
64	A vision based aerial robot solution for the Mission 7 of the International Aerial Robotics Competition. , 2015, , .		12
65	A supervised approach to electric tower detection and classification for power line inspection. , 2014, , ,		77
66	Using the Cross-Entropy method for control optimization: A case study of see-and-avoid on unmanned aerial vehicles. , 2014, , .		4
67	A General Purpose Configurable Controller for Indoors and Outdoors GPS-Denied Navigation for Multirotor Unmanned Aerial Vehicles. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 73, 387-400.	3.4	33
68	Online learning-based robust visual tracking for autonomous landing of Unmanned Aerial Vehicles. , 2014, , .		14
69	A system for the design and development of vision-based multi-robot quadrotor swarms. , 2014, , .		21
70	A Vision-based Quadrotor Swarm for the participation in the 2013 International Micro Air Vehicle Competition. , 2014, , .		19
71	A ground-truth video dataset for the development and evaluation of vision-based Sense-and-Avoid systems. , 2014, , .		5
72	Robust real-time vision-based aircraft tracking from Unmanned Aerial Vehicles. , 2014, , .		72

#	Article	IF	CITATIONS
73	Towards autonomous detection and tracking of electric towers for aerial power line inspection. , 2014, , .		58
74	Vibration reduction for vision systems on board unmanned aerial vehicles using a neuro-fuzzy controller. JVC/Journal of Vibration and Control, 2014, 20, 2243-2253.	2.6	15
75	HMPMR strategy for real-time tracking in aerial images, using direct methods. Machine Vision and Applications, 2014, 25, 1283-1308.	2.7	10
76	Monocular Visual-Inertial SLAM-Based Collision Avoidance Strategy for Fail-Safe UAV Using Fuzzy Logic Controllers. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 73, 513-533.	3.4	45
77	Computer vision based general object following for GPS-denied multirotor unmanned vehicles. , 2014, , .		69
78	An Approach Toward Visual Autonomous Ship Board Landing of a VTOL UAV. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 74, 113-127.	3.4	73
79	Visual Quadrotor Swarm for the IMAV 2013 Indoor Competition. Advances in Intelligent Systems and Computing, 2014, , 55-63.	0.6	8
80	Floor Optical Flow Based Navigation Controller for Multirotor Aerial Vehicles. Advances in Intelligent Systems and Computing, 2014, , 91-106.	0.6	1
81	A Hierarchical Tracking Strategy for Vision-Based Applications On-Board UAVs. Journal of Intelligent and Robotic Systems: Theory and Applications, 2013, 72, 517-539.	3.4	13
82	UAS see-and-avoid strategy using a fuzzy logic controller optimized by Cross-Entropy in Scaling Factors and Membership Functions. , 2013, , .		7
83	Cross-Entropy Optimization for Scaling Factors of a Fuzzy Controller: A See-and-Avoid Approach for Unmanned Aerial Systems. Journal of Intelligent and Robotic Systems: Theory and Applications, 2013, 69, 189-205.	3.4	23
84	Vision based GPS-denied Object Tracking and following for unmanned aerial vehicles. , 2013, , .		62
85	Toward visual autonomous ship board landing of a VTOL UAV. , 2013, , .		25
86	A vision-based strategy for autonomous aerial refueling tasks. Robotics and Autonomous Systems, 2013, 61, 876-895.	5.1	58
87	Towards Autonomous Air-to-Air Refuelling for UAVs using visual information. , 2013, , .		16
88	A general purpose configurable navigation controller for micro aerial multirotor vehicles. , 2013, , .		8
89	Welcome message from the ICUAS association. , 2013, , .		0
90	Real-time Adaptive Multi-Classifier Multi-Resolution Visual Tracking Framework for Unmanned Aerial Vehicles. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 99-106.	0.4	6

#	ARTICLE	IF	CITATIONS
91	Autonomous Landing of an Unmanned Aerial Vehicle using Image-Based Fuzzy Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 79-86.	0.4	6
92	MAVwork: A Framework for Unified Interfacing between Micro Aerial Vehicles and Visual Controllers. Studies in Computational Intelligence, 2013, , 165-179.	0.9	7
93	Vision Based Control for Micro Aerial Vehicles: Application to Sense and Avoid. Studies in Computational Intelligence, 2013, , 127-141.	0.9	0
94	Autonomous Guided Car Using a Fuzzy Controller. Studies in Computational Intelligence, 2013, , 37-55.	0.9	0
95	Adaptive Control System based on Linear Control Theory for the Path-Following Problem of a Car-Like Mobile Robot. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 252-257.	0.4	0
96	See-and-avoid quadcopter using fuzzy control optimized by cross-entropy. , 2012, , .		11
97	Real-time recognition of patient intentions from sequences of pressure maps using artificial neural networks. Computers in Biology and Medicine, 2012, 42, 364-375.	7.0	7
98	Discernment of bee pollen loads using computer vision and one-class classification techniques. Journal of Food Engineering, 2012, 112, 50-59.	5.2	15
99	A visual AGV-urban car using Fuzzy control. , 2011, , .		9
100	3D object following based on visual information for Unmanned Aerial Vehicles. , 2011, , .		15
101	A Multi-resolution Image Alignment Technique Based on Direct Methods for Pose Estimation of Aerial Vehicles. , 2011, , .		3
102	Omnidirectional bearing-only see-and-avoid for small aerial robots. , 2011, , .		19
103	On-board and Ground Visual Pose Estimation Techniques for UAV Control. Journal of Intelligent and Robotic Systems: Theory and Applications, 2011, 61, 301-320.	3.4	56
104	Unmanned aerial vehicles UAVs attitude, height, motion estimation and control using visual systems. Autonomous Robots, 2010, 29, 17-34.	4.8	53
105	Omnidirectional vision applied to Unmanned Aerial Vehicles (UAVs) attitude and heading estimation. Robotics and Autonomous Systems, 2010, 58, 809-819.	5.1	44
106	A New "User-friendly―Blast Furnace Advisory Control System Using a Neural Network Temperature Profile Classifier. ISIJ International, 2010, 50, 730-737.	1.4	4
107	Visual Servoing for UAVs. , 2010, , .		3

108 Fuzzy controller for UAV-landing task using 3D-position visual estimation. , 2010, , .

22

#	Article	IF	CITATIONS
109	3D pose estimation based on planar object tracking for UAVs control. , 2010, , .		48
110	An intelligent control strategy based on ANFIS techniques in order to improve the performance of a low-cost unmanned aerial vehicle vision system. , 2010, , .		5
111	A robotic eye controller based on cooperative neural agents. , 2010, , .		2
112	On-board and Ground Visual Pose Estimation Techniques for UAV Control. , 2010, , 301-320.		2
113	NON-SYMMETRIC MEMBERSHIP FUNCTION FOR FUZZY-BASED VISUAL SERVOING ONBOARD A UAV. , 2010, , .		0
114	Dimensionality reduction by self organizing maps that preserve distances in output space. , 2009, , .		8
115	Computer Vision Onboard UAVs for Civilian Tasks. Journal of Intelligent and Robotic Systems: Theory and Applications, 2009, 54, 105-135.	3.4	65
116	Visual 3-D SLAM from UAVs. Journal of Intelligent and Robotic Systems: Theory and Applications, 2009, 55, 299-321.	3.4	123
117	Trinocular ground system to control UAVs. , 2009, , .		28
118	A pan-tilt camera Fuzzy vision controller on an unmanned aerial vehicle. , 2009, , .		17
119	Estimating the Embedding Dimension Distribution of Time Series with SOMOS. Lecture Notes in Computer Science, 2009, , 1168-1175.	1.3	0
120	Computer Vision Onboard UAVs for Civilian Tasks. , 2008, , 105-135.		8
121	FUZZY CONTROL SYSTEM NAVIGATION USING PRIORITY AREAS. , 2008, , .		5
122	STEREO VISUAL SYSTEM FOR AUTONOMOUS AIR VEHICLE NAVIGATION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 203-208.	0.4	5
123	COLIBRI: A vision-Guided UAV for Surveillance and Visual Inspection. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	33
124	Visual Model Feature Tracking For UAV Control. , 2007, , .		37
125	Image Compression by a Time Enhanced Self Organizing Map. Lecture Notes in Computer Science, 2006, , 985-992.	1.3	1

126 Two Seconds to Touchdown - Vision-Based Controlled Forced Landing. , 2006, , .

19

#	Article	IF	CITATIONS
127	An Application of Convolutional Neural Networks for Automatic Inspection. , 2006, , .		4
128	ISA STUDENT SECTIONS IN SPAIN: CONNECTING ACADEMIC AND INDUSTRY FOR EDUCATION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 643-648.	0.4	1
129	Visual servoing of an autonomous helicopter in urban areas using feature tracking. Journal of Field Robotics, 2006, 23, 185-199.	6.0	121
130	InsPulp-I© : An on-line visual inspection system for the pulp industry. Computers in Industry, 2005, 56, 935-942.	9.9	10
131	Residual Activity in the Neurons Allows SOMs to Learn Temporal Order. Lecture Notes in Computer Science, 2005, , 379-384.	1.3	2
132	Defects Detection in Continuous Manufacturing by means of Convolutional Neural Networks. Lecture Notes in Computer Science, 2003, , 528-535.	1.3	1
133	An Stereoscopic Vision System Guiding an Autonomous Helicopter for Overhead Power Cable Inspection. Lecture Notes in Computer Science, 2001, , 115-124.	1.3	20
134	Automatic Generation of Digital Filters by NN Based Learning: An Application on Paper Pulp Inspection. Lecture Notes in Computer Science, 2001, , 235-245.	1.3	4
135	Arquitectura Neuronal con Aprendizaje Incremental y Creacion de Mapas: el Modelo ARM. Inteligencia Artificial, 2000, 4, .	0.8	0
136	<title>Surface analysis of cast aluminum by means of artificial vision and AI-based techniques</title> . , 1996, , .		0
137	<title>New three-dimensional visualization system based on angular image differentiation</title> . , 1995, , .		5
138	<title>Calibration system for a new 3D autostereoscopic device based on angular differentiation</title> ., 1995, , .		0
139	Automated Visual Inspection of Non-Smooth Surfaces. Application to Cast Aluminum. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1995, 28, 235-240.	0.4	0
140	<title>Photogrammetric determination of the location and orientation of a group of cameras for a perspective transformation on a new autostereoscopic display</title> . , 1995, 2409, 176.		0
141	A neural network based quality control system for steel strip manufacturing. Annual Review in Automatic Programming, 1994, 19, 185-190.	0.2	3
142	<title>Computer vision system for three-dimensional inspection</title> ., 1994, 2247, 15.		0
143	<title>On-line surface inspection for continuous cast aluminum strip</title> . , 1993, , .		4
144	<title>Three-dimensional digitizer for the footwear industry</title> . , 1993, , .		3

#	Article	IF	CITATIONS
145	A Production System for AGVS Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1990, 23, 659-663.	0.4	0
146	Vision system for on-line surface inspection in aluminum casting process. , 0, , .		27
147	On-line texture analysis for flat products inspection. Neural nets implementation. , 0, , .		1
148	A convolutional neural architecture: an application for defects detection in continuous manufacturing systems. , 0, , .		1
149	Detection and Tracking of External Features in an Urban Environment Using an Autonomous Helicopter. , 0, , .		16
150	A visual servoing approach for tracking features in urban areas using an autonomous helicopter. , 0, ,		29
151	FAST RRT* 3D-Sliced Planner for Autonomous Exploration Using MAVs. Unmanned Systems, 0, , 1-12.	3.6	1
152	Vision Based Fuzzy Control Approaches for Unmanned Aerial Vehicles. , 0, , .		3