Wolf-Dietrich Hardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7129705/publications.pdf

Version: 2024-02-01

180 papers 20,691 citations

69 h-index 135 g-index

212 all docs 212 docs citations

212 times ranked 19200 citing authors

#	Article	IF	CITATIONS
1	A Motile Doublet Form of $\langle i \rangle$ Salmonella Typhimurium $\langle i \rangle$ Diversifies Target Search Behaviour at the Epithelial Surface. Molecular Microbiology, 2022, , .	2.5	2
2	Impact of horizontal gene transfer on emergence and stability of cooperative virulence in Salmonella Typhimurium. Nature Communications, 2022, 13, 1939.	12.8	14
3	KappaBle fluorescent reporter mice enable low-background single-cell detection of NF-κB transcriptional activity in vivo. Mucosal Immunology, 2022, 15, 656-667.	6.0	1
4	Epithelial inflammasomes in the defense against Salmonella gut infection. Current Opinion in Microbiology, 2021, 59, 86-94.	5.1	31
5	Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo. ISME Journal, 2021, 15, 862-878.	9.8	66
6	Elucidating host–microbe interactions <i>in vivo</i> by studying population dynamics using neutral genetic tags. Immunology, 2021, 162, 341-356.	4.4	10
7	Analysis of Salmonella Persister Population Sizes, Dynamics of Gut Luminal Seeding, and in of Salmonellosis. Methods in Molecular Biology, 2021, 2357, 253-272.	0.9	O
8	Pathogen's dynamic standoff with the host. Current Opinion in Microbiology, 2021, 59, iii-v.	5.1	1
9	High throughput sequencing provides exact genomic locations of inducible prophages and accurate phage-to-host ratios in gut microbial strains. Microbiome, 2021, 9, 77.	11.1	20
10	Epithelium-autonomous NAIP/NLRC4 prevents TNF-driven inflammatory destruction of the gut epithelial barrier in Salmonella-infected mice. Mucosal Immunology, 2021, 14, 615-629.	6.0	45
11	Bacterial detection by NAIP/NLRC4 elicits prompt contractions of intestinal epithelial cell layers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
12	Long-term evolution and short-term adaptation of microbiota strains and sub-strains in mice. Cell Host and Microbe, 2021, 29, 650-663.e9.	11.0	58
13	A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nature Microbiology, 2021, 6, 830-841.	13.3	21
14	Dynamic modelling to identify mitigation strategies for the COVID-19 pandemic. Swiss Medical Weekly, 2021, 151, w20487.	1.6	6
15	miR-802 regulates Paneth cell function and enterocyte differentiation in the mouse small intestine. Nature Communications, 2021, 12, 3339.	12.8	16
16	Microbiota-derived metabolites inhibit <i<math>>Salmonella$<$ii>$>$ virulent subpopulation development by acting on single-cell behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .</i<math>	7.1	20
17	Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. Journal of Experimental Medicine, 2021, 218, .	8.5	14
18	CXCL12-abundant reticular cells are the major source of IL-6 upon LPS stimulation and thereby regulate hematopoiesis. Blood Advances, 2021, 5, 5002-5015.	5.2	9

#	Article	IF	CITATIONS
19	Salmonella effector driven invasion of the gut epithelium: breaking in and setting the house on fire. Current Opinion in Microbiology, 2021, 64, 9-18.	5.1	36
20	The Polar <i>Legionella </i> Icm/Dot T4SS Establishes Distinct Contact Sites with the Pathogen Vacuole Membrane. MBio, 2021, 12, e0218021.	4.1	10
21	Smart investment of virus RNA testing resources to enhance Covid-19 mitigation. PLoS ONE, 2021, 16, e0259018.	2.5	3
22	Pathogen invasion-dependent tissue reservoirs and plasmid-encoded antibiotic degradation boost plasmid spread in the gut. ELife, 2021, 10, .	6.0	15
23	Silicon Nitride, a Bioceramic for Bone Tissue Engineering: A Reinforced Cryogel System With Antibiofilm and Osteogenic Effects. Frontiers in Bioengineering and Biotechnology, 2021, 9, 794586.	4.1	14
24	How Food Affects Colonization Resistance Against Enteropathogenic Bacteria. Annual Review of Microbiology, 2020, 74, 787-813.	7.3	27
25	Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium. PLoS Pathogens, 2020, 16, e1008503.	4.7	37
26	The Interplay between Salmonella enterica Serovar Typhimurium and the Intestinal Mucosa during Oral Infection., 2020,, 41-57.		1
27	Import of Aspartate and Malate by DcuABC Drives H2/Fumarate Respiration to Promote Initial Salmonella Gut-Lumen Colonization in Mice. Cell Host and Microbe, 2020, 27, 922-936.e6.	11.0	58
28	Evolutionary causes and consequences of bacterial antibiotic persistence. Nature Reviews Microbiology, 2020, 18, 479-490.	28.6	113
29	Spatiotemporal proteomics uncovers cathepsin-dependent macrophage cell death during Salmonella infection. Nature Microbiology, 2020, 5, 1119-1133.	13.3	30
30	Germâ€free and microbiotaâ€associated mice yield small intestinal epithelial organoids with equivalent and robust transcriptome/proteome expression phenotypes. Cellular Microbiology, 2020, 22, e13191.	2.1	26
31	Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen Salmonella Typhimurium due to site-specific bacterial PAMP expression. Mucosal Immunology, 2020, 13, 530-544.	6.0	94
32	Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature, 2019, 573, 276-280.	27.8	169
33	Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice. Nature Microbiology, 2019, 4, 2164-2174.	13.3	88
34	Enchained growth and cluster dislocation: A possible mechanism for microbiota homeostasis. PLoS Computational Biology, 2019, 15, e1006986.	3.2	20
35	Mucus Architecture and Near-Surface Swimming Affect Distinct Salmonella Typhimurium Infection Patterns along the Murine Intestinal Tract. Cell Reports, 2019, 27, 2665-2678.e3.	6.4	88
36	Barcoded Consortium Infections Resolve Cell Type-Dependent Salmonella enterica Serovar Typhimurium Entry Mechanisms. MBio, 2019, 10 , .	4.1	17

#	Article	IF	Citations
37	The Interplay between <i>Salmonella enterica</i> Serovar Typhimurium and the Intestinal Mucosa during Oral Infection. Microbiology Spectrum, 2019, 7, .	3.0	15
38	Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 2019, 17, 441-448.	28.6	748
39	Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nature Biotechnology, 2019, 37, 314-322.	17.5	254
40	Basic Processes in Salmonella-Host Interactions: Within-Host Evolution and the Transmission of the Virulent Genotype. , 2019 , , 81 -94.		0
41	The Major RNA-Binding Protein ProQ Impacts Virulence Gene Expression in Salmonella enterica Serovar Typhimurium. MBio, 2019, 10, .	4.1	81
42	ATP released by intestinal bacteria limits the generation of protective IgA against enteropathogens. Nature Communications, 2019, 10, 250.	12.8	63
43	Consequences of Epithelial Inflammasome Activation by Bacterial Pathogens. Journal of Molecular Biology, 2018, 430, 193-206.	4.2	15
44	Growth-restricting effects of siRNA transfections: a largely deterministic combination of off-target binding and hybridization-independent competition. Nucleic Acids Research, 2018, 46, 9309-9320.	14.5	7
45	Microbiota stability in healthy individuals after single-dose lactulose challenge—A randomized controlled study. PLoS ONE, 2018, 13, e0206214.	2.5	18
46	Inflammatory bactericidal lectin ReglIIÎ ² : Friend or foe for the host?. Gut Microbes, 2018, 9, 179-187.	9.8	20
47	The Bactericidal Lectin RegIll \hat{l}^2 Prolongs Gut Colonization and Enteropathy in the Streptomycin Mouse Model for Salmonella Diarrhea. Cell Host and Microbe, 2017, 21, 195-207.	11.0	84
48	Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nature Microbiology, 2017, 2, 16268.	13.3	58
49	High-avidity IgA protects the intestine by enchaining growing bacteria. Nature, 2017, 544, 498-502.	27.8	307
50	Salmonella Typhimurium Diarrhea Reveals Basic Principles of Enteropathogen Infection and Disease-Promoted DNA Exchange. Cell Host and Microbe, 2017, 21, 443-454.	11.0	98
51	Evolution of bacterial virulence. FEMS Microbiology Reviews, 2017, 41, 679-697.	8.6	139
52	Inflammation boosts bacteriophage transfer between <i>Salmonella</i> spp Science, 2017, 355, 1211-1215.	12.6	160
53	Pathogen-Induced TLR4-TRIF Innate Immune Signaling in Hematopoietic Stem Cells Promotes Proliferation but Reduces Competitive Fitness. Cell Stem Cell, 2017, 21, 225-240.e5.	11.1	210
54	Basic Processes in $\langle i \rangle$ Salmonella $\langle i \rangle$ -Host Interactions: Within-Host Evolution and the Transmission of the Virulent Genotype. Microbiology Spectrum, 2017, 5, .	3.0	16

#	Article	IF	Citations
55	The Impact of 18 Ancestral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium. PLoS Genetics, 2016, 12, e1006258.	3.5	129
56	IFN- \hat{l}^3 Hinders Recovery from Mucosal Inflammation during Antibiotic Therapy for Salmonella Gut Infection. Cell Host and Microbe, 2016, 20, 238-249.	11.0	33
57	Antimicrobial resistance: Survival by reversible resistance. Nature Microbiology, 2016, 1, 16072.	13.3	2
58	Epitope-Tagged Autotransporters as Single-Cell Reporters for Gene Expression by a Salmonella Typhimurium wbaP Mutant. PLoS ONE, 2016, 11, e0154828.	2.5	5
59	A Genome-Wide siRNA Screen Implicates Spire $1/2$ in SipA-Driven Salmonella Typhimurium Host Cell Invasion. PLoS ONE, 2016, 11 , e0161965.	2.5	16
60	An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection. PLoS Pathogens, 2016, 12, e1005723.	4.7	51
61	Population Dynamics Analysis of Ciprofloxacin-Persistent S. Typhimurium Cells in a Mouse Model for Salmonella Diarrhea. Methods in Molecular Biology, 2016, 1333, 189-203.	0.9	2
62	gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens. Genome Biology, 2015, 16, 220.	8.8	35
63	Low-oxygen tensions found in <i>Salmonella</i> -infected gut tissue boost <i>Salmonella</i> -ireplication in macrophages by impairing antimicrobial activity and augmenting <i>Salmonella</i> >irulence. Cellular Microbiology, 2015, 17, 1833-1847.	2.1	43
64	Indirect Toll-like receptor 5-mediated activation of conventional dendritic cells promotes the mucosal adjuvant activity of flagellin in the respiratory tract. Vaccine, 2015, 33, 3331-3341.	3.8	24
65	Cholera toxin-B (ctxB) antigen expressing Salmonella Typhimurium polyvalent vaccine exerts protective immune response against Vibrio cholerae infection. Vaccine, 2015, 33, 1880-1889.	3.8	8
66	Experimental approaches to phenotypic diversity in infection. Current Opinion in Microbiology, 2015, 27, 25-36.	5.1	34
67	Inflammasomes of the intestinal epithelium. Trends in Immunology, 2015, 36, 442-450.	6.8	76
68	Homed to the hideout. Nature, 2015, 527, 309-310.	27.8	3
69	Autophagy Proteins Promote Repair of Endosomal Membranes Damaged by the Salmonella Type Three Secretion System 1. Cell Host and Microbe, 2015, 18, 527-537.	11.0	116
70	Granulocytes Impose a Tight Bottleneck upon the Gut Luminal Pathogen Population during Salmonella Typhimurium Colitis. PLoS Pathogens, 2014, 10, e1004557.	4.7	73
71	Bistable Expression of Virulence Genes in Salmonella Leads to the Formation of an Antibiotic-Tolerant Subpopulation. PLoS Biology, 2014, 12, e1001928.	5.6	172
72	Cecum Lymph Node Dendritic Cells Harbor Slow-Growing Bacteria Phenotypically Tolerant to Antibiotic Treatment. PLoS Biology, 2014, 12, e1001793.	5.6	139

#	Article	IF	CITATIONS
73	The <i>>S>and contributes to intracellular replication. Cellular Microbiology, 2014, 16, 1723-1735.</i>	2.1	35
74	Simultaneous analysis of large-scale RNAi screens for pathogen entry. BMC Genomics, 2014, 15, 1162.	2.8	38
75	Specific inhibition of diverse pathogens in human cells by synthetic microRNA-like oligonucleotides inferred from RNAi screens. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4548-4553.	7.1	60
76	Antibiotic Treatment Selects for Cooperative Virulence of Salmonella Typhimurium. Current Biology, 2014, 24, 2000-2005.	3.9	87
77	Epithelium-Intrinsic NAIP/NLRC4 Inflammasome Drives Infected Enterocyte Expulsion to Restrict Salmonella Replication in the Intestinal Mucosa. Cell Host and Microbe, 2014, 16, 237-248.	11.0	327
78	Salmonella Typhimurium Strain ATCC14028 Requires H2-Hydrogenases for Growth in the Gut, but Not at Systemic Sites. PLoS ONE, 2014, 9, e110187.	2.5	20
79	Microbiota-Derived Hydrogen Fuels Salmonella Typhimurium Invasion of the Gut Ecosystem. Cell Host and Microbe, 2013, 14, 641-651.	11.0	145
80	Deletion of invH gene in Salmonella enterica serovar Typhimurium limits the secretion of Sip effector proteins. Microbes and Infection, 2013, 15, 66-73.	1.9	36
81	Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature, 2013, 494, 353-356.	27.8	289
82	'Blooming' in the gut: how dysbiosis might contribute to pathogen evolution. Nature Reviews Microbiology, 2013, 11, 277-284.	28.6	314
83	Quantitative insights into actin rearrangements and bacterial target site selection fromSalmonellaâ€Typhimurium infection of micropatterned cells. Cellular Microbiology, 2013, 15, n/a-n/a.	2.1	15
84	Lymph Node Colonization Dynamics after Oral Salmonella Typhimurium Infection in Mice. PLoS Pathogens, 2013, 9, e1003532.	4.7	70
85	Outer Membrane Permeabilization Is an Essential Step in the Killing of Gram-Negative Bacteria by the Lectin RegIIIÎ ² . PLoS ONE, 2013, 8, e69901.	2.5	42
86	NADPH Oxidase Deficient Mice Develop Colitis and Bacteremia upon Infection with Normally Avirulent, TTSS-1- and TTSS-2-Deficient Salmonella Typhimurium. PLoS ONE, 2013, 8, e77204.	2.5	44
87	Stability of gene rankings from RNAi screens. Bioinformatics, 2012, 28, 1612-1618.	4.1	5
88	Near Surface Swimming of Salmonella Typhimurium Explains Target-Site Selection and Cooperative Invasion. PLoS Pathogens, 2012, 8, e1002810.	4.7	109
89	A Novel Phage Element of Salmonella enterica Serovar Enteritidis P125109 Contributes to Accelerated Type III Secretion System 2-Dependent Early Inflammation Kinetics in a Mouse Colitis Model. Infection and Immunity, 2012, 80, 3236-3246.	2.2	26
90	Peroral Ciprofloxacin Therapy Impairs the Generation of a Protective Immune Response in a Mouse Model for Salmonella enterica Serovar Typhimurium Diarrhea, while Parenteral Ceftriaxone Therapy Does Not. Antimicrobial Agents and Chemotherapy, 2012, 56, 2295-2304.	3.2	23

#	Article	IF	Citations
91	The Bactericidal Activity of the C-type Lectin Reglll \hat{l}^2 against Gram-negative Bacteria involves Binding to Lipid A. Journal of Biological Chemistry, 2012, 287, 34844-34855.	3.4	91
92	Gut inflammation can boost horizontal gene transfer between pathogenic and commensal <i>Enterobacteriaceae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1269-1274.	7.1	398
93	Salmonella Gut Invasion Involves TTSS-2-Dependent Epithelial Traversal, Basolateral Exit, and Uptake by Epithelium-Sampling Lamina Propria Phagocytes. Cell Host and Microbe, 2012, 11, 19-32.	11.0	127
94	Salmonella Transiently Reside in Luminal Neutrophils in the Inflamed Gut. PLoS ONE, 2012, 7, e34812.	2.5	57
95	Caspase-1 Has Both Proinflammatory and Regulatory Properties in <i>Helicobacter</i> Infections, Which Are Differentially Mediated by Its Substrates IL- $1\hat{l}^2$ and IL-18. Journal of Immunology, 2012, 188, 3594-3602.	0.8	126
96	The streptomycin mouse model for <i>Salmonella</i> diarrhea: functional analysis of the microbiota, the pathogen's virulence factors, and the host's mucosal immune response. Immunological Reviews, 2012, 245, 56-83.	6.0	153
97	Live Attenuated S. Typhimurium Vaccine with Improved Safety in Immuno-Compromised Mice. PLoS ONE, 2012, 7, e45433.	2.5	25
98	Subpopulation-Specific Metabolic Pathway Usage in Mixed Cultures as Revealed by Reporter Protein-Based ¹³ C Analysis. Applied and Environmental Microbiology, 2011, 77, 1816-1821.	3.1	33
99	<i>Bartonella henselae</i> engages inside-out and outside-in signaling by integrin $\hat{1}^21$ and talin1 during invasome-mediated bacterial uptake. Journal of Cell Science, 2011, 124, 3591-3602.	2.0	22
100	Salmonella Typhimurium diarrhea: switching the mucosal epithelium from homeostasis to defense. Current Opinion in Immunology, 2011, 23, 456-463.	5.5	31
101	Roles of spvB and spvC in S. Typhimurium colitis via the alternative pathway. International Journal of Medical Microbiology, 2011, 301, 117-124.	3.6	18
102	Mechanisms controlling pathogen colonization of the gut. Current Opinion in Microbiology, 2011, 14, 82-91.	5.1	345
103	Salmonella-Induced Mucosal Lectin ReglIl \hat{I}^2 Kills Competing Gut Microbiota. PLoS ONE, 2011, 6, e20749.	2.5	102
104	Stromal IFN- \hat{l}^3 R-Signaling Modulates Goblet Cell Function During Salmonella Typhimurium Infection. PLoS ONE, 2011, 6, e22459.	2.5	78
105	RNAi screen of <i>Salmonella</i> invasion shows role of COPI in membrane targeting of cholesterol and Cdc42. Molecular Systems Biology, 2011, 7, 474.	7.2	89
106	<i>Salmonella enterica</i> Serovar Typhimurium Binds to HeLa Cells via Fim-Mediated Reversible Adhesion and Irreversible Type Three Secretion System 1-Mediated Docking. Infection and Immunity, 2011, 79, 330-341.	2.2	78
107	The Cost of Virulence: Retarded Growth of Salmonella Typhimurium Cells Expressing Type III Secretion System 1. PLoS Pathogens, 2011, 7, e1002143.	4.7	213
108	TLR5 Signaling Stimulates the Innate Production of IL-17 and IL-22 by CD3negCD127+ Immune Cells in Spleen and Mucosa. Journal of Immunology, 2010, 185, 1177-1185.	0.8	124

#	Article	IF	CITATIONS
109	Infected Cell in Trouble: Bystander Cells Ring the Bell. Immunity, 2010, 33, 652-654.	14.3	3
110	<i>Salmonella</i> pathogenicity island 1 differentially modulates bacterial entry to dendritic and nonâ€phagocytic cells. Immunology, 2010, 130, 273-287.	4.4	43
111	Molecular dissection of <i>Salmonella </i> -induced membrane ruffling versus invasion. Cellular Microbiology, 2010, 12, 84-98.	2.1	52
112	IL-17A/F-Signaling Does Not Contribute to the Initial Phase of Mucosal Inflammation Triggered by S. Typhimurium. PLoS ONE, 2010, 5, e13804.	2.5	14
113	Absence of Poly(ADP-Ribose) Polymerase 1 Delays the Onset of <i>Salmonella enterica</i> Serovar Typhimurium-Induced Gut Inflammation. Infection and Immunity, 2010, 78, 3420-3431.	2.2	29
114	The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Salmonella Diarrhea. PLoS Pathogens, 2010, 6, e1001097.	4.7	314
115	Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria. PLoS Pathogens, 2010, 6, e1000711.	4.7	367
116	Caspase-1 Activation via Rho GTPases: A Common Theme in Mucosal Infections?. PLoS Pathogens, 2010, 6, e1000795.	4.7	12
117	Enhanced CellClassifier: a multi-class classification tool for microscopy images. BMC Bioinformatics, 2010, 11, 30.	2.6	78
118	In Macrophages, Caspase-1 Activation by SopE and the Type III Secretion System-1 of S. Typhimurium Can Proceed in the Absence of Flagellin. PLoS ONE, 2010, 5, e12477.	2.5	34
119	O-Antigen-Negative <i>Salmonella enterica</i> Serovar Typhimurium Is Attenuated in Intestinal Colonization but Elicits Colitis in Streptomycin-Treated Mice. Infection and Immunity, 2009, 77, 2568-2575.	2.2	57
120	Clostridium difficile Toxin CDT Induces Formation of Microtubule-Based Protrusions and Increases Adherence of Bacteria. PLoS Pathogens, 2009, 5, e1000626.	4.7	283
121	Bacterial Colitis Increases Susceptibility to Oral Prion Disease. Journal of Infectious Diseases, 2009, 199, 243-252.	4.0	35
122	Accelerated Type III Secretion System 2-Dependent Enteropathogenesis by a <i>Salmonella enterica</i> Serovar Enteritidis PT4/6 Strain. Infection and Immunity, 2009, 77, 3569-3577.	2.2	25
123	Intestinal Lamina Propria Dendritic Cell Subsets Have Different Origin and Functions. Immunity, 2009, 31, 502-512.	14.3	635
124	The S. Typhimurium Effector SopE Induces Caspase-1 Activation in Stromal Cells to Initiate Gut Inflammation. Cell Host and Microbe, 2009, 6, 125-136.	11.0	135
125	Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism. Science, 2009, 325, 617-620.	12.6	443
126	Self-destructive cooperation mediated by phenotypic noise. Nature, 2008, 454, 987-990.	27.8	384

#	Article	IF	CITATIONS
127	Motility allows S.ÂTyphimurium to benefit from the mucosal defence. Cellular Microbiology, 2008, 10, 1166-1180.	2.1	174
128	Hierarchical Effector Protein Transport by the Salmonella Typhimurium SPI-1 Type III Secretion System. PLoS ONE, 2008, 3, e2178.	2.5	64
129	The role of microbiota in infectious disease. Trends in Microbiology, 2008, 16, 107-114.	7.7	440
130	Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent stepin î" <i>invG S</i> . Typhimurium colitis. Journal of Experimental Medicine, 2008, 205, 437-450.	8.5	164
131	A Simple Screen to Identify Promoters Conferring High Levels of Phenotypic Noise. PLoS Genetics, 2008, 4, e1000307.	3.5	74
132	Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota. PLoS Biology, 2007, 5, e244.	5.6	905
133	Salmonella Pathogenicity Island 4 encodes a giant non-fimbrial adhesin and the cognate type 1 secretion system. Cellular Microbiology, 2007, 9, 1834-1850.	2.1	163
134	Two newly identified SipA domains (F1, F2) steer effector protein localization and contribute to <i>Salmonella</i> host cell manipulation. Molecular Microbiology, 2007, 65, 741-760.	2.5	39
135	Impact of Salmonella Typhimurium DT104 virulence factors invC and sseD on the onset, clinical course, colonization patterns and immune response of porcine salmonellosis. Veterinary Microbiology, 2007, 124, 274-285.	1.9	37
136	Salmonella type III secretion effectors: pulling the host cell's strings. Current Opinion in Microbiology, 2006, 9, 46-54.	5.1	174
137	The chaperone binding domain of SopE inhibits transport via flagellar and SPI-1 TTSS in the absence of InvB. Molecular Microbiology, 2006, 59, 248-264.	2.5	23
138	Virulence of Broad- and Narrow-Host-Range Salmonella enterica Serovars in the Streptomycin-PretreatedMouse Model. Infection and Immunity, 2006, 74, 632-644.	2.2	58
139	Chronic Salmonella enterica Serovar Typhimurium-Induced Colitis and Cholangitis in Streptomycin-Pretreated Nramp1+/+ Mice. Infection and Immunity, 2006, 74, 5047-5057.	2.2	65
140	Bacteriophage-encoded type III effectors in subspecies 1 serovar Typhimurium. Infection, Genetics and Evolution, 2005, 5, 1-9.	2.3	53
141	Salmonella Pathogenicity Island 2-Mediated Overexpression of Chimeric SspH2 Proteins for Simultaneous Induction of Antigen-Specific CD4 and CD8 T Cells. Infection and Immunity, 2005, 73, 334-341.	2.2	29
142	Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12548-12553.	7.1	178
143	The Salmonella Pathogenicity Island (SPI)-2 and SPI-1 Type III Secretion Systems Allow <i>Salmonella</i> Serovar <i>typhimurium</i> to Trigger Colitis via MyD88-Dependent and MyD88-Independent Mechanisms. Journal of Immunology, 2005, 174, 1675-1685.	0.8	344
144	Comparison of Salmonella enterica Serovar Typhimurium Colitis in Germfree Mice and Mice Pretreated with Streptomycin. Infection and Immunity, 2005, 73, 3228-3241.	2.2	136

#	Article	IF	CITATIONS
145	A mouse model for S. typhimurium-induced enterocolitis. Trends in Microbiology, 2005, 13, 497-503.	7.7	167
146	Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infection, Genetics and Evolution, 2005, 5, 1-9.	2.3	63
147	Flagella and Chemotaxis Are Required for Efficient Induction of Salmonella enterica Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice. Infection and Immunity, 2004, 72, 4138-4150.	2.2	305
148	Role of the Salmonella Pathogenicity Island 1 Effector Proteins SipA, SopB, SopE, and SopE2 in Salmonella enterica Subspecies 1 Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice. Infection and Immunity, 2004, 72, 795-809.	2.2	202
149	InvB Is Required for Type III-Dependent Secretion of SopA in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2004, 186, 1215-1219.	2.2	48
150	Lack of mismatch correction facilitates genome evolution in mycobacteria. Molecular Microbiology, 2004, 53, 1601-1609.	2.5	70
151	Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion. Microbiology and Molecular Biology Reviews, 2004, 68, 560-602.	6.6	1,412
152	A Burkholderia pseudomallei Type III Secreted Protein, BopE, Facilitates Bacterial Invasion of Epithelial Cells and Exhibits Guanine Nucleotide Exchange Factor Activity. Journal of Bacteriology, 2003, 185, 4992-4996.	2.2	143
153	The SopEÎ Phage Integrates into the <i>ssrA</i> Gene <i>of Salmonella enterica</i> Serovar Typhimurium A36 and Is Closely Related to the Fels-2 Prophage. Journal of Bacteriology, 2003, 185, 5182-5191.	2.2	57
154	Pretreatment of Mice with Streptomycin Provides a <i>Salmonella enterica</i> Serovar Typhimurium Colitis Model That Allows Analysis of Both Pathogen and Host. Infection and Immunity, 2003, 71, 2839-2858.	2.2	864
155	Amino Acids of the Bacterial Toxin SopE Involved in G Nucleotide Exchange on Cdc42. Journal of Biological Chemistry, 2003, 278, 27149-27159.	3.4	29
156	Dangerous Liaisons between a Microbe and the Prion Protein. Journal of Experimental Medicine, 2003, 198, 1-4.	8.5	59
157	Role of the Salmonella Pathogenicity Island 1 (SPI-1) Protein InvB in Type III Secretion of SopE and SopE2, Two Salmonella Effector Proteins Encoded Outside of SPI-1. Journal of Bacteriology, 2003, 185, 6950-6967.	2.2	77
158	The Salmonella enterica Serotype Typhimurium Effector Proteins SipA, SopA, SopB, SopD, and SopE2 Act in Concert To Induce Diarrhea in Calves. Infection and Immunity, 2002, 70, 3843-3855.	2.2	249
159	Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Molecular Microbiology, 2002, 36, 1206-1221.	2.5	256
160	Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Molecular Microbiology, 2002, 43, 1089-1103.	2.5	153
161	Phage mediated horizontal transfer of thesopE1gene increases enteropathogenicity ofSalmonella entericaserotype Typhimurium for calves. FEMS Microbiology Letters, 2002, 217, 243-247.	1.8	56
162	Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO Journal, 2002, 21, 3286-3295.	7.8	126

#	Article	IF	CITATIONS
163	The dual role of wild phages for horizontal gene transfer among Salmonella strains. Berliner Und Munchener Tierarztliche Wochenschrift, 2002, 115, 355-9.	0.7	11
164	Transfer of the Salmonella type III effector sopE between unrelated phage families 1 1Edited by M. Gottesman. Journal of Molecular Biology, 2001, 312, 7-16.	4.2	83
165	Characterization of effector proteins translocated via the SPI1 type III secretion system of Salmonella typhimurium. International Journal of Medical Microbiology, 2001, 291, 479-485.	3.6	40
166	SopE and SopE2 from Salmonella typhimurium Activate Different Sets of RhoGTPases of the Host Cell. Journal of Biological Chemistry, 2001, 276, 34035-34040.	3.4	209
167	Protection Against Murine Listeriosis by Oral Vaccination with Recombinant <i>Salmonella</i> Expressing Hybrid <i>Yersinia</i> Type III Proteins. Journal of Immunology, 2001, 167, 357-365.	0.8	85
168	Salmonella Host Cell Invasion Emerged by Acquisition of a Mosaic of Separate Genetic Elements, Including Salmonella Pathogenicity Island 1 (SPI1), SPI5, and sopE2. Journal of Bacteriology, 2001, 183, 2348-2358.	2.2	121
169	Purification and biochemical activity of Salmonella exchange factor SopE. Methods in Enzymology, 2000, 325, 82-91.	1.0	12
170	Biochemical Analysis of SopE from Salmonella typhimurium, a Highly Efficient Guanosine Nucleotide Exchange Factor for RhoGTPases. Journal of Biological Chemistry, 1999, 274, 30501-30509.	3.4	83
171	Characterization of SprA, an AraC-like transcriptional regulator encoded within the Salmonella typhimurium pathogenicity island 1. Molecular Microbiology, 1999, 33, 139-152.	2.5	61
172	Salmonella typhimurium Encodes a Putative Iron Transport System within the Centisome 63 Pathogenicity Island. Infection and Immunity, 1999, 67, 1974-1981.	2.2	10
173	<i>Salmonella typhimurium</i> Encodes a Putative Iron Transport System within the Centisome 63 Pathogenicity Island. Infection and Immunity, 1999, 67, 1974-1981.	2.2	146
174	S. typhimurium Encodes an Activator of Rho GTPases that Induces Membrane Ruffling and Nuclear Responses in Host Cells. Cell, 1998, 93, 815-826.	28.9	764
175	Mutational Analysis of the Joining Regions Flanking Helix P18 inE. coliRNase P RNA. Journal of Molecular Biology, 1996, 259, 422-433.	4.2	18
176	Towards a new concept of gene inactivation: specific RNA cleavage by endogenous ribonuclease P. Biotechnology Annual Review, 1995, 1, 215-265.	2.1	14
177	Kinetics and Thermodynamics of the RNase P RNA Cleavage Reaction:Analysis of tRNA 3'-end Variants. Journal of Molecular Biology, 1995, 247, 161-172.	4.2	65
178	Lead-ion-induced cleavage of RNase P RNA. FEBS Journal, 1994, 219, 49-56.	0.2	79
179	Gel retardation analysis of E.coli M1 RNA-tRNA complexes. Nucleic Acids Research, 1993, 21, 3521-3527.	14.5	48
180	Host-mediated invasion: the Salmonella Typhimurium trigger., 0,, 213-243.		0