List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7129610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for <i>Zaire Ebolavirus</i> and <i>Lake Victoria Marburgvirus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8426-8431.	7.1	330
2	Role of the Phosphatidylserine Receptor TIM-1 in Enveloped-Virus Entry. Journal of Virology, 2013, 87, 8327-8341.	3.4	219
3	Phosphatidylserine receptors: Enhancers of enveloped virus entry and infection. Virology, 2014, 468-470, 565-580.	2.4	155
4	Interferon gamma induces the expression of human immunodeficiency virus in persistently infected promonocytic cells (U1) and redirects the production of virions to intracytoplasmic vacuoles in phorbol myristate acetate-differentiated U1 cells Journal of Experimental Medicine, 1992, 176, 739-750.	8.5	148
5	HIV-1 Infection of First-Trimester and Term Human Placental Tissue: A Possible Mode of Maternal-Fetal Transmission. Journal of Infectious Diseases, 1989, 160, 583-588.	4.0	144
6	The Tyro3 Receptor Kinase Axl Enhances Macropinocytosis of Zaire Ebolavirus. Journal of Virology, 2011, 85, 334-347.	3.4	138
7	Inhibition of HIV-1 replication by P-TEFb inhibitors DRB, seliciclib and flavopiridol correlates with release of free P-TEFb from the large, inactive form of the complex. Retrovirology, 2007, 4, 47.	2.0	110
8	Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein. Virology, 2011, 415, 83-94.	2.4	105
9	Comprehensive Functional Analysis of N-Linked Glycans on Ebola Virus GP1. MBio, 2014, 5, e00862-13.	4.1	93
10	BST-2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by CHIKV non-structural protein 1 (nsP1). Virology, 2013, 438, 37-49.	2.4	91
11	Identification of a novel isoform of Cdk9. Gene, 2003, 307, 175-182.	2.2	89
12	Filovirus Entry: A Novelty in the Viral Fusion World. Viruses, 2012, 4, 258-275.	3.3	87
13	Ebola Virus Entry: A Curious and Complex Series of Events. PLoS Pathogens, 2015, 11, e1004731.	4.7	82
14	Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature, 2020, 585, 414-419.	27.8	82
15	Ebola Virus Glycoprotein 1: Identification of Residues Important for Binding and Postbinding Events. Journal of Virology, 2007, 81, 7702-7709.	3.4	81
16	Rho GTPases Modulate Entry of Ebola Virus and Vesicular Stomatitis Virus Pseudotyped Vectors. Journal of Virology, 2009, 83, 10176-10186.	3.4	79
17	Selective infection of human CD4+ cells by simian immunodeficiency virus: productive infection associated with envelope glycoprotein-induced fusion Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 2443-2447.	7.1	77
18	Identification and Mapping of Single Nucleotide Polymorphisms in the Varicella-Zoster Virus Genome. Virology, 2001, 280, 1-6.	2.4	76

#	Article	IF	CITATIONS
19	Interferon-Î ³ Inhibits Ebola Virus Infection. PLoS Pathogens, 2015, 11, e1005263.	4.7	71
20	Replication of HIV-1 in primary monocyte cultures. Virology, 1990, 175, 465-476.	2.4	69
21	TIM-family proteins inhibit HIV-1 release. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3699-707.	7.1	68
22	TIM-1 Mediates Dystroglycan-Independent Entry of Lassa Virus. Journal of Virology, 2018, 92, .	3.4	66
23	Characterizing Functional Domains for TIM-Mediated Enveloped Virus Entry. Journal of Virology, 2014, 88, 6702-6713.	3.4	63
24	TIM1 (HAVCR1) Is Not Essential for Cellular Entry of Either Quasi-enveloped or Naked Hepatitis A Virions. MBio, 2017, 8, .	4.1	63
25	Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathogens, 2021, 17, e1009743.	4.7	55
26	Effects of Magnesium on Intact Chloroplasts. Plant Physiology, 1980, 65, 350-354.	4.8	53
27	Large-Scale Screening and Identification of Novel Ebola Virus and Marburg Virus Entry Inhibitors. Antimicrobial Agents and Chemotherapy, 2016, 60, 4471-4481.	3.2	52
28	Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L Virology Journal, 2011, 8, 188.	3.4	44
29	AMP-Activated Protein Kinase Is Required for the Macropinocytic Internalization of Ebolavirus. Journal of Virology, 2013, 87, 746-755.	3.4	39
30	TIM-1 serves as a receptor for Ebola virus in vivo, enhancing viremia and pathogenesis. PLoS Neglected Tropical Diseases, 2019, 13, e0006983.	3.0	38
31	Characterization of Human and Murine T-Cell Immunoglobulin Mucin Domain 4 (TIM-4) IgV Domain Residues Critical for Ebola Virus Entry. Journal of Virology, 2016, 90, 6097-6111.	3.4	36
32	Ebola Virus Entry into Host Cells: Identifying Therapeutic Strategies. Current Clinical Microbiology Reports, 2015, 2, 115-124.	3.4	34
33	Equine Endothelial Cells Support Productive Infection of Equine Infectious Anemia Virus. Journal of Virology, 1998, 72, 9291-9297.	3.4	32
34	Endocytosis and a Low-pH Step Are Required for Productive Entry of Equine Infectious Anemia Virus. Journal of Virology, 2005, 79, 14482-14488.	3.4	30
35	The role of mononuclear phagocytes in Ebola virus infection. Journal of Leukocyte Biology, 2018, 104, 717-727.	3.3	29
36	Biomechanical characterization of TIM protein–mediated Ebola virus–host cell adhesion. Scientific Reports, 2019, 9, 267.	3.3	29

#	Article	IF	CITATIONS
37	Regulation of equine infectious anemia virus expression. Journal of Biomedical Science, 1998, 5, 11-23.	7.0	28
38	Ebolavirus: a brief review of novel therapeutic targets. Future Microbiology, 2012, 7, 1-4.	2.0	28
39	Enhanced Gene Expression Conferred by Stepwise Modification of a Nonprimate Lentiviral Vector. Human Gene Therapy, 2007, 18, 1244-1252.	2.7	27
40	Equine Infectious Anemia Virus Entry Occurs through Clathrin-Mediated Endocytosis. Journal of Virology, 2008, 82, 1628-1637.	3.4	27
41	IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. PLoS Neglected Tropical Diseases, 2019, 13, e0007819.	3.0	27
42	Mechanisms of Filovirus Entry. Current Topics in Microbiology and Immunology, 2017, 411, 323-352.	1.1	26
43	DH82 cells: a macrophage cell line for the replication and study of equine infectious anemia virus. Journal of Virological Methods, 2001, 95, 47-56.	2.1	25
44	Inhibition of lentivirus replication by aqueous extracts of Prunella vulgaris. Virology Journal, 2009, 6, 8.	3.4	24
45	Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Protective, Noninfectious Vaccine against Ebola Virus Challenge in Mice. Journal of Virology, 2017, 91, .	3.4	23
46	A 2′FY-RNA Motif Defines an Aptamer for Ebolavirus Secreted Protein. Scientific Reports, 2018, 8, 12373.	3.3	23
47	Cellular specificity of HIV-1 replication can be controlled by LTR sequences. Virology, 2003, 314, 680-695.	2.4	22
48	Characterization of a Cytolytic Strain of Equine Infectious Anemia Virus. Journal of Virology, 2003, 77, 2385-2399.	3.4	20
49	Identification of light-independent inhibition of human immunodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum. Virology Journal, 2009, 6, 101.	3.4	20
50	The Role of Conserved N-Linked Glycans on Ebola Virus Glycoprotein 2. Journal of Infectious Diseases, 2015, 212, S204-S209.	4.0	19
51	Evolution of the Equine Infectious Anemia Virus Long Terminal Repeat during the Alteration of Cell Tropism. Journal of Virology, 2005, 79, 5653-5664.	3.4	18
52	Cell Specificity of the Transcription-Factor Repertoire Used by a Lentivirus: Motifs Important for Expression of Equine Infectious Anemia Virus in Nonmonocytic Cells. Virology, 2000, 267, 267-278.	2.4	17
53	PU.1 Binding to ets Motifs within the Equine Infectious Anemia Virus Long Terminal Repeat (LTR) Enhancer: Regulation of LTR Activity and Virus Replication in Macrophages. Journal of Virology, 2004, 78, 3407-3418.	3.4	17
54	Synthesis of chroman aldehydes that inhibit HIV. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1399-1401.	2.2	17

#	Article	IF	CITATIONS
55	Human Organotypic Airway and Lung Organoid Cells of Bronchiolar and Alveolar Differentiation Are Permissive to Infection by Influenza and SARS-CoV-2 Respiratory Virus. Frontiers in Cellular and Infection Microbiology, 2022, 12, 841447.	3.9	17
56	TIM1 (HAVCR1): an Essential "Receptor―or an "Accessory Attachment Factor―for Hepatitis A Virus?. Journal of Virology, 2019, 93, .	3.4	16
57	Differences in Glycoprotein Complex Receptor Binding Site Accessibility Prompt Poor Cross-Reactivity of Neutralizing Antibodies between Closely Related Arenaviruses. Journal of Virology, 2017, 91, .	3.4	14
58	Lentiviral Vectors Pseudotyped with Filoviral Glycoproteins. Methods in Molecular Biology, 2017, 1628, 65-78.	0.9	14
59	Hemolysis-associated phosphatidylserine exposure promotes polyclonal plasmablast differentiation. Journal of Experimental Medicine, 2021, 218, .	8.5	12
60	Acute Plasmodium Infection Promotes Interferon-Gamma-Dependent Resistance to Ebola Virus Infection. Cell Reports, 2020, 30, 4041-4051.e4.	6.4	11
61	Transcutaneous DNA immunization following waxing-based hair depilation. Journal of Controlled Release, 2012, 157, 94-102.	9.9	9
62	Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors. Molecular Therapy - Nucleic Acids, 2013, 2, e69.	5.1	9
63	An Equine Infectious Anemia Virus Variant Superinfects Cells through Novel Receptor Interactions. Journal of Virology, 2008, 82, 9425-9432.	3.4	8
64	Frontline Science: CD40 signaling restricts RNA virus replication in Mϕs, leading to rapid innate immune control of acute virus infection. Journal of Leukocyte Biology, 2021, 109, 309-325.	3.3	8
65	Drug induced superinfection in HIV and the evolution of drug resistance. Infection, Genetics and Evolution, 2008, 8, 40-50.	2.3	7
66	Production of Filovirus Glycoprotein-Pseudotyped Vesicular Stomatitis Virus for Study of Filovirus Entry Mechanisms. Methods in Molecular Biology, 2017, 1628, 53-63.	0.9	7
67	Enveloped RNA virus utilization of phosphatidylserine receptors: Advantages of exploiting a conserved, widely available mechanism of entry. PLoS Pathogens, 2021, 17, e1009899.	4.7	7
68	Adipocytes are susceptible to Ebola Virus infection. Virology, 2022, 573, 12-22.	2.4	4
69	A Naturally Occurring Polymorphism in the Base of Sudan Virus Glycoprotein Decreases Glycoprotein Stability in a Species-Dependent Manner. Journal of Virology, 2021, 95, e0107321.	3.4	1
70	HIV-1 Infection of First-Trimester and Placental Tissue. Obstetrical and Gynecological Survey, 1990, 45, 299-300.	0.4	0
71	IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. , 2019, 13, e0007819.		0
72	IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. , 2019, 13, e0007819.		0

#	Article	IF	CITATIONS
73	IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. , 2019, 13, e0007819.		0
74	IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. , 2019, 13, e0007819.		0