Marja L Mikkola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7128594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stimulation of ectodermal organ development by Ectodysplasin-A1. Developmental Biology, 2003, 259, 123-136.	2.0	235
2	Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development (Cambridge), 2002, 129, 2541-2553.	2.5	198
3	Ectodysplasin signaling in development. Cytokine and Growth Factor Reviews, 2003, 14, 211-224.	7.2	184
4	TNF Signaling via the Ligand–Receptor Pair Ectodysplasin and Edar Controls the Function of Epithelial Signaling Centers and Is Regulated by Wnt and Activin during Tooth Organogenesis. Developmental Biology, 2001, 229, 443-455.	2.0	175
5	Molecular aspects of hypohidrotic ectodermal dysplasia. American Journal of Medical Genetics, Part A, 2009, 149A, 2031-2036.	1.2	171
6	Early inductive events in ectodermal appendage morphogenesis. Seminars in Cell and Developmental Biology, 2014, 25-26, 11-21.	5.0	157
7	Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development (Cambridge), 2004, 131, 4907-4919.	2.5	146
8	Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes and Development, 2013, 27, 450-458.	5.9	126
9	The Mammary Bud as a Skin Appendage: Unique and Shared Aspects of Development. Journal of Mammary Gland Biology and Neoplasia, 2006, 11, 187-203.	2.7	118
10	Sustained epithelial β-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation. Development (Cambridge), 2008, 135, 1019-1028.	2.5	114
11	Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes. Developmental Biology, 2008, 320, 60-71.	2.0	113
12	Replaying evolutionary transitions from the dental fossil record. Nature, 2014, 512, 44-48.	27.8	102
13	Directional Cell Migration, but Not Proliferation, Drives Hair Placode Morphogenesis. Developmental Cell, 2014, 28, 588-602.	7.0	100
14	Genetic basis of skin appendage development. Seminars in Cell and Developmental Biology, 2007, 18, 225-236.	5.0	98
15	Ectodysplasin is released by proteolytic shedding and binds to the EDAR protein. Human Molecular Genetics, 2001, 10, 953-962.	2.9	97
16	TNF superfamily in skin appendage development. Cytokine and Growth Factor Reviews, 2008, 19, 219-230.	7.2	83
17	Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development (Cambridge), 2002, 129, 2541-53.	2.5	75
18	Early epithelial signaling center governs tooth budding morphogenesis. Journal of Cell Biology, 2016, 214, 753-767.	5.2	66

Marja L Mikkola

#	Article	IF	CITATIONS
19	Hair follicle dermal condensation forms via Fgf20 primed cell cycle exit, cell motility, and aggregation. ELife, 2018, 7, .	6.0	62
20	Sostdc1 defines the size and number of skin appendage placodes. Developmental Biology, 2012, 364, 149-161.	2.0	58
21	Foxi3 Deficiency Compromises Hair Follicle Stem Cell Specification and Activation. Stem Cells, 2016, 34, 1896-1908.	3.2	58
22	Tooth patterning and enamel formation can be manipulated by misexpression of TNF receptor Edar. Developmental Dynamics, 2004, 231, 432-440.	1.8	48
23	Identification of Ectodysplasin Target Genes Reveals the Involvement of Chemokines in Hair Development. Journal of Investigative Dermatology, 2012, 132, 1094-1102.	0.7	46
24	p63 in Skin Appendage Development. Cell Cycle, 2007, 6, 285-290.	2.6	45
25	Ectodysplasin research—Where to next?. Seminars in Immunology, 2014, 26, 220-228.	5.6	30
26	New insights into fetal mammary gland morphogenesis: differential effects of natural and environmental estrogens. Scientific Reports, 2017, 7, 40806.	3.3	30
27	FGF signalling controls the specification of hair placode-derived SOX9 positive progenitors to Merkel cells. Nature Communications, 2018, 9, 2333.	12.8	30
28	Ectodysplasin/NF-κB Promotes Mammary Cell Fate via Wnt/β-catenin Pathway. PLoS Genetics, 2015, 11, e1005676.	3.5	23
29	Suppression of epithelial differentiation by Foxi3 is essential for molar crown patterning. Development (Cambridge), 2015, 142, 3954-63.	2.5	21
30	Development of ectodermal organs. Seminars in Cell and Developmental Biology, 2014, 25-26, 1-2.	5.0	20
31	Ectodysplasin target gene Fgf20 regulates mammary bud growth and ductal invasion and branching during puberty. Scientific Reports, 2017, 7, 5049.	3.3	17
32	The Edar Subfamily in Hair and Exocrine Gland Development. Advances in Experimental Medicine and Biology, 2011, 691, 23-33.	1.6	15
33	Inductive signals in branching morphogenesis – lessons from mammary and salivary glands. Current Opinion in Cell Biology, 2019, 61, 72-78.	5.4	15
34	Controlling the Number of Tooth Rows. Science Signaling, 2009, 2, pe53.	3.6	14
35	Hairless Streaks in Cattle Implicate TSR2 in Early Hair Follicle Formation. PLoS Genetics, 2015, 11, e1005427.	3.5	14
36	Cell influx and contractile actomyosin force drive mammary bud growth and invagination. Journal of Cell Biology, 2021, 220, .	5.2	7

Marja L Mikkola

#	Article	IF	CITATIONS
37	Protocol for Studying Embryonic Mammary Gland Branching Morphogenesis Ex Vivo. Methods in Molecular Biology, 2022, 2471, 1-18.	0.9	4
38	Protocol: Adeno-Associated Virus-Mediated Gene Transfer in Ex Vivo Cultured Embryonic Mammary Gland. Journal of Mammary Gland Biology and Neoplasia, 2020, 25, 409-416.	2.7	3
39	The Eleventh ENBDC Workshop: Advances in Technology Help to Unveil Mechanisms of Mammary Gland Development and Cancerogenesis. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 201-206.	2.7	2
40	In Utero Protein Therapy for an Inherited Developmental Disorder. New England Journal of Medicine, 2018, 378, 1637-1638.	27.0	1