
Fumin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/712832/publications.pdf Version: 2024-02-01

FUMIN HUANC

#	Article	IF	CITATIONS
1	Searching for refractory plasmonic materials: The structural and optical properties of Au3Zr intermetallic thin films. Journal of Alloys and Compounds, 2022, 891, 161930.	5.5	1
2	Optical properties of Au-Hf thin films. Journal of Alloys and Compounds, 2022, 912, 165127.	5.5	0
3	Observation of single-defect memristor in an MoS2 atomic sheet. Nature Nanotechnology, 2021, 16, 58-62.	31.5	148
4	Graphene-based active metasurface with more than 330° phase tunability operating at mid-infrared spectrum. Carbon, 2021, 173, 512-520.	10.3	16
5	The Intricate Love Affairs between MoS ₂ and Metallic Substrates. Advanced Materials Interfaces, 2020, 7, 2001324.	3.7	15
6	Graphene-based spatial light modulator using optical checkerboard AMC metasurface. Optics Communications, 2020, 474, 126115.	2.1	3
7	Customizing the reduction of individual graphene oxide flakes for precise work function tuning with meV precision. Nanoscale Advances, 2020, 2, 2738-2744.	4.6	3
8	Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities. ACS Applied Materials & Interfaces, 2020, 12, 19866-19873.	8.0	27
9	Strain and Charge Doping Fingerprints of the Strong Interaction between Monolayer MoS ₂ and Gold. Journal of Physical Chemistry Letters, 2020, 11, 6112-6118.	4.6	77
10	Achieving extremely high optical contrast of atomically-thin MoS ₂ . Nanotechnology, 2020, 31, 145706.	2.6	15
11	The Optical Properties of AuZr Intermetallic Alloys. , 2019, , .		0
12	Exfoliation of Centimetre-Sized Transition Metal Dichalcogenide Monolayers. , 2019, , .		0
13	Atomically Thin Boron Nitride as an Ideal Spacer for Metal-Enhanced Fluorescence. ACS Nano, 2019, 13, 12184-12191.	14.6	24
14	Optical Contrast of Atomically Thin Films. Journal of Physical Chemistry C, 2019, 123, 7440-7446.	3.1	13
15	Optimising the visibility of graphene and graphene oxide on gold with multilayer heterostructures. Nanotechnology, 2018, 29, 275205.	2.6	14
16	Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano, 2018, 12, 10463-10472.	14.6	203
17	Rigorous and Accurate Contrast Spectroscopy for Ultimate Thickness Determination of Micrometer-Sized Graphene on Gold and Molecular Sensing. ACS Applied Materials & Interfaces, 2018, 10, 22520-22528.	8.0	12
18	Near-Field Raman Enhancement of Single Molecules and Point Scatterers. Journal of Physical Chemistry C, 2017, 121, 18800-18806.	3.1	3

Fumin Huang

#	Article	IF	CITATIONS
19	Endonuclease controlled aggregation of gold nanoparticles for the ultrasensitive detection of pathogenic bacterial DNA. Biosensors and Bioelectronics, 2017, 92, 502-508.	10.1	35
20	Zeroâ€Reflectance Metafilms for Optimal Plasmonic Sensing. Advanced Optical Materials, 2016, 4, 328-335.	7.3	20
21	Photon nanojet lens: design, fabrication and characterization. Nanotechnology, 2016, 27, 165302.	2.6	6
22	Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene. Nano Letters, 2013, 13, 5033-5038.	9.1	210
23	Near-Field Plasmonics of an Individual Dielectric Nanoparticle above a Metallic Substrate. Journal of Physical Chemistry C, 2013, 117, 7784-7790.	3.1	53
24	Multilayer mirrored bubbles with spatially-chirped and elastically-tuneable optical bandgaps. Optics Express, 2012, 20, 6421.	3.4	8
25	Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats. Applied Physics Letters, 2012, 100, .	3.3	57
26	Direct assembly of three-dimensional mesh plasmonic rolls. Applied Physics Letters, 2012, 100, 193107.	3.3	15
27	Metal Oxide Nanoparticle Mediated Enhanced Raman Scattering and Its Use in Direct Monitoring of Interfacial Chemical Reactions. Nano Letters, 2012, 12, 4242-4246.	9.1	103
28	Dressing Plasmons in Particle-in-Cavity Architectures. Nano Letters, 2011, 11, 1221-1226.	9.1	101
29	Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[<i>n</i>]uril "Glue― ACS Nano, 2011, 5, 3878-3887.	14.6	322
30	Enhancing solar cells with localized plasmons in nanovoids. Optics Express, 2011, 19, 11256.	3.4	76
31	Ultrafast nonlinearities of minibands in metallodielectric Bragg resonators. Physical Review B, 2011, 84, .	3.2	10
32	Controlling Plasmonic Interactions with Nanometer-scale Precision. , 2011, , .		0
33	Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nature Nanotechnology, 2010, 5, 511-515.	31.5	353
34	Actively Tuned Plasmons on Elastomerically Driven Au Nanoparticle Dimers. Nano Letters, 2010, 10, 1787-1792.	9.1	188
35	Super-Resolution without Evanescent Waves. Nano Letters, 2009, 9, 1249-1254.	9.1	285
36	Nanohole Array as a Lens. Nano Letters, 2008, 8, 2469-2472.	9.1	153

Fumin Huang

#	Article	IF	CITATIONS
37	Optical super-resolution through super-oscillations. Journal of Optics, 2007, 9, S285-S288.	1.5	116
38	Fluorescence enhancement and energy transfer in apertureless scanning near-field optical microscopy. Journal of Optics, 2006, 8, S234-S238.	1.5	10
39	Tip-enhanced fluorescence imaging of quantum dots. Applied Physics Letters, 2005, 87, 183101.	3.3	52
40	Tip-enhanced Raman microscopy: practicalities and limitations. Journal of Raman Spectroscopy, 2003, 34, 663-667.	2.5	90
41	Abnormal anti-Stokes Raman scattering of carbon nanotubes. Physical Review B, 2002, 66, .	3.2	22
42	Raman spectra of SiC nanorods with different excitation wavelengths. Science Bulletin, 2001, 46, 1865-1866.	1.7	3
43	Effect of defects on optical phonon Raman spectra in SiC nanorods. Solid State Communications, 1999, 111, 647-651.	1.9	117
44	Temperature dependence of the Raman spectra of carbon nanotubes. Journal of Applied Physics, 1998, 84, 4022-4024.	2.5	158
45	Micro-Raman spectroscopic study of two-dimensional stress distribution in poly-Si induced by patterns. Semiconductor Science and Technology, 1998, 13, 634-636.	2.0	5
46	Comparative Raman Study of Carbon Nanotubes Prepared by D.C. Arc Discharge and Catalytic Methods. Journal of Raman Spectroscopy, 1997, 28, 369-372.	2.5	115
47	Comparative Raman Study of Carbon Nanotubes Prepared by D.C. Arc Discharge and Catalytic Methods. Journal of Raman Spectroscopy, 1997, 28, 369-372.	2.5	1
48	Multiple Source Quantum Well Model of Porous Silicon Light Emission. Journal of the Electrochemical Society, 1996, 143, 1394-1398.	2.9	6
49	Two-peak photoluminescence and light-emitting mechanism of porous silicon. Physical Review B, 1995, 51, 11194-11197.	3.2	15