Fumin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/712832/publications.pdf

Version: 2024-02-01

279798 223800 3,281 49 23 46 h-index citations g-index papers 50 50 50 5248 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nature Nanotechnology, 2010, 5, 511-515.	31.5	353
2	Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[<i>n</i>]uril "Glue― ACS Nano, 2011, 5, 3878-3887.	14.6	322
3	Super-Resolution without Evanescent Waves. Nano Letters, 2009, 9, 1249-1254.	9.1	285
4	Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene. Nano Letters, 2013, 13, 5033-5038.	9.1	210
5	Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano, 2018, 12, 10463-10472.	14.6	203
6	Actively Tuned Plasmons on Elastomerically Driven Au Nanoparticle Dimers. Nano Letters, 2010, 10, 1787-1792.	9.1	188
7	Temperature dependence of the Raman spectra of carbon nanotubes. Journal of Applied Physics, 1998, 84, 4022-4024.	2.5	158
8	Nanohole Array as a Lens. Nano Letters, 2008, 8, 2469-2472.	9.1	153
9	Observation of single-defect memristor in an MoS2 atomic sheet. Nature Nanotechnology, 2021, 16, 58-62.	31.5	148
10	Effect of defects on optical phonon Raman spectra in SiC nanorods. Solid State Communications, 1999, 111, 647-651.	1.9	117
11	Optical super-resolution through super-oscillations. Journal of Optics, 2007, 9, S285-S288.	1.5	116
12	Comparative Raman Study of Carbon Nanotubes Prepared by D.C. Arc Discharge and Catalytic Methods. Journal of Raman Spectroscopy, 1997, 28, 369-372.	2.5	115
13	Metal Oxide Nanoparticle Mediated Enhanced Raman Scattering and Its Use in Direct Monitoring of Interfacial Chemical Reactions. Nano Letters, 2012, 12, 4242-4246.	9.1	103
14	Dressing Plasmons in Particle-in-Cavity Architectures. Nano Letters, 2011, 11, 1221-1226.	9.1	101
15	Tip-enhanced Raman microscopy: practicalities and limitations. Journal of Raman Spectroscopy, 2003, 34, 663-667.	2.5	90
16	Strain and Charge Doping Fingerprints of the Strong Interaction between Monolayer MoS ₂ and Gold. Journal of Physical Chemistry Letters, 2020, 11, 6112-6118.	4.6	77
17	Enhancing solar cells with localized plasmons in nanovoids. Optics Express, 2011, 19, 11256.	3.4	76
18	Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats. Applied Physics Letters, 2012, 100, .	3.3	57

#	Article	IF	CITATIONS
19	Near-Field Plasmonics of an Individual Dielectric Nanoparticle above a Metallic Substrate. Journal of Physical Chemistry C, 2013, 117, 7784-7790.	3.1	53
20	Tip-enhanced fluorescence imaging of quantum dots. Applied Physics Letters, 2005, 87, 183101.	3.3	52
21	Endonuclease controlled aggregation of gold nanoparticles for the ultrasensitive detection of pathogenic bacterial DNA. Biosensors and Bioelectronics, 2017, 92, 502-508.	10.1	35
22	Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19866-19873.	8.0	27
23	Atomically Thin Boron Nitride as an Ideal Spacer for Metal-Enhanced Fluorescence. ACS Nano, 2019, 13, 12184-12191.	14.6	24
24	Abnormal anti-Stokes Raman scattering of carbon nanotubes. Physical Review B, 2002, 66, .	3.2	22
25	Zeroâ€Reflectance Metafilms for Optimal Plasmonic Sensing. Advanced Optical Materials, 2016, 4, 328-335.	7.3	20
26	Graphene-based active metasurface with more than $330 \hat{A}^{\circ}$ phase tunability operating at mid-infrared spectrum. Carbon, 2021, 173, 512-520.	10.3	16
27	Two-peak photoluminescence and light-emitting mechanism of porous silicon. Physical Review B, 1995, 51, 11194-11197.	3.2	15
28	Direct assembly of three-dimensional mesh plasmonic rolls. Applied Physics Letters, 2012, 100, 193107.	3.3	15
29	The Intricate Love Affairs between MoS ₂ and Metallic Substrates. Advanced Materials Interfaces, 2020, 7, 2001324.	3.7	15
30	Achieving extremely high optical contrast of atomically-thin MoS ₂ . Nanotechnology, 2020, 31, 145706.	2.6	15
31	Optimising the visibility of graphene and graphene oxide on gold with multilayer heterostructures. Nanotechnology, 2018, 29, 275205.	2.6	14
32	Optical Contrast of Atomically Thin Films. Journal of Physical Chemistry C, 2019, 123, 7440-7446.	3.1	13
33	Rigorous and Accurate Contrast Spectroscopy for Ultimate Thickness Determination of Micrometer-Sized Graphene on Gold and Molecular Sensing. ACS Applied Materials & Interfaces, 2018, 10, 22520-22528.	8.0	12
34	Fluorescence enhancement and energy transfer in apertureless scanning near-field optical microscopy. Journal of Optics, 2006, 8, S234-S238.	1.5	10
35	Ultrafast nonlinearities of minibands in metallodielectric Bragg resonators. Physical Review B, 2011, 84, .	3.2	10
36	Multilayer mirrored bubbles with spatially-chirped and elastically-tuneable optical bandgaps. Optics Express, 2012, 20, 6421.	3.4	8

#	Article	IF	Citations
37	Multiple Source Quantum Well Model of Porous Silicon Light Emission. Journal of the Electrochemical Society, 1996, 143, 1394-1398.	2.9	6
38	Photon nanojet lens: design, fabrication and characterization. Nanotechnology, 2016, 27, 165302.	2.6	6
39	Micro-Raman spectroscopic study of two-dimensional stress distribution in poly-Si induced by patterns. Semiconductor Science and Technology, 1998, 13, 634-636.	2.0	5
40	Raman spectra of SiC nanorods with different excitation wavelengths. Science Bulletin, 2001, 46, 1865-1866.	1.7	3
41	Near-Field Raman Enhancement of Single Molecules and Point Scatterers. Journal of Physical Chemistry C, 2017, 121, 18800-18806.	3.1	3
42	Graphene-based spatial light modulator using optical checkerboard AMC metasurface. Optics Communications, 2020, 474, 126115.	2.1	3
43	Customizing the reduction of individual graphene oxide flakes for precise work function tuning with meV precision. Nanoscale Advances, 2020, 2, 2738-2744.	4.6	3
44	Searching for refractory plasmonic materials: The structural and optical properties of Au3Zr intermetallic thin films. Journal of Alloys and Compounds, 2022, 891, 161930.	5 . 5	1
45	Comparative Raman Study of Carbon Nanotubes Prepared by D.C. Arc Discharge and Catalytic Methods. Journal of Raman Spectroscopy, 1997, 28, 369-372.	2.5	1
46	The Optical Properties of AuZr Intermetallic Alloys. , 2019, , .		0
47	Exfoliation of Centimetre-Sized Transition Metal Dichalcogenide Monolayers. , 2019, , .		0
48	Controlling Plasmonic Interactions with Nanometer-scale Precision. , 2011, , .		0
49	Optical properties of Au-Hf thin films. Journal of Alloys and Compounds, 2022, 912, 165127.	5.5	O