
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7127744/publications.pdf Version: 2024-02-01

KELLI HOOVED

#	Article	IF	CITATIONS
1	OUP accepted manuscript. Environmental Entomology, 2022, , .	1.4	5
2	Baculoviruses hijack the visual perception of their caterpillar hosts to induce climbing behaviour thus promoting virus dispersal. Molecular Ecology, 2022, 31, 2752-2765.	3.9	6
3	Host permissiveness to baculovirus influences timeâ€dependent immune responses and fitness costs. Insect Science, 2021, 28, 103-114.	3.0	8
4	Salicinoid phenolics reduce adult Anoplophora glabripennis (Cerambicidae: Lamiinae) feeding and egg production. Arthropod-Plant Interactions, 2021, 15, 127-136.	1.1	3
5	Performance and host association of spotted lanternfly (Lycorma delicatula) among common woody ornamentals. Scientific Reports, 2021, 11, 15774.	3.3	17
6	Spotted Lanternfly (Hemiptera: Fulgoridae) Nymphal Dispersion Patterns and Their Influence on Field Experiments. Environmental Entomology, 2021, , .	1.4	7
7	Potential Impacts of Translocation of Neonicotinoid Insecticides to Cotton (Gossypium hirsutum) Tj ETQq1 1 0. 159-168.	784314 rg 1.4	BT /Overlock 8
8	Dispersal of Lycorma delicatula (Hemiptera: Fulgoridae) Nymphs Through Contiguous, Deciduous Forest. Environmental Entomology, 2020, 49, 1012-1018.	1.4	17
9	Asymmetric Responses to Climate Change: Temperature Differentially Alters Herbivore Salivary Elicitor and Host Plant Responses to Herbivory. Journal of Chemical Ecology, 2020, 46, 891-905.	1.8	10
10	Dispersion Patterns and Sample Size Estimates for Egg Masses of Spotted Lanternfly (Hemiptera:) Tj ETQq0 0 0	rgBT /Ove 1.4	rlock 10 Tf 50
11	Spotted Lanternfly (Hemiptera: Fulgoridae) Can Complete Development and Reproduce Without Access to the Preferred Host, Ailanthus altissima. Environmental Entomology, 2020, 49, 1185-1190.	1.4	24
12	Comparing Asian Gypsy Moth [<i>Lymantria dispar asiatica</i> (Lepidoptera: Erebidae) and <i>L. dispar japonica</i>] Trap Data From East Asian Ports With Lab Parameterized Phenology Models: New Tools and Questions. Annals of the Entomological Society of America, 2020, 113, 125-138.	2.5	5
13	Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE, 2020, 15, e0229848.	2.5	46
14	Bacterial and Fungal Midgut Community Dynamics and Transfer Between Mother and Brood in the Asian Longhorned Beetle (Anoplophora glabripennis), an Invasive Xylophage. Microbial Ecology, 2019, 77, 230-242.	2.8	31
15	Divergent host plant utilization by adults and offspring is related to intraâ€plant variation in chemical defences. Journal of Animal Ecology, 2019, 88, 1789-1798.	2.8	8
16	Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15991-15996.	7.1	65
17	Parasitic Wasp Mediates Plant Perception of Insect Herbivores. Journal of Chemical Ecology, 2019, 45, 972-981.	1.8	16
18	Pathogen-Mediated Tritrophic Interactions: Baculovirus-Challenged Caterpillars Induce Higher Plant Defenses than Healthy Caterpillars. Journal of Chemical Ecology, 2019, 45, 515-524.	1.8	7

#	Article	IF	CITATIONS
19	Labial and maxillary palp recordings of the Asian longhorned beetle, Anoplophora glabripennis, reveal olfactory and hygroreceptive capabilities. Journal of Insect Physiology, 2019, 117, 103905.	2.0	8
20	Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Scientific Reports, 2019, 9, 2792.	3.3	97
21	Enterobacter ludwigii, isolated from the gut microbiota of Helicoverpa zea, promotes tomato plant growth and yield without compromising anti-herbivore defenses. Arthropod-Plant Interactions, 2019, 13, 271-278.	1.1	13
22	Symbiotic polydnavirus of a parasite manipulates caterpillar and plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5199-5204.	7.1	64
23	Host miRNAs are involved in hormonal regulation of HaSNPVâ€triggered climbing behaviour in <i>Helicoverpa armigera</i> . Molecular Ecology, 2018, 27, 459-475.	3.9	30
24	Jasmonic acid-induced plant defenses delay caterpillar developmental resistance to a baculovirus: Slow-growth, high-mortality hypothesis in plant–insect–pathogen interactions. Journal of Invertebrate Pathology, 2018, 158, 16-23.	3.2	9
25	Gut-Associated Bacteria of Helicoverpa zea Indirectly Trigger Plant Defenses in Maize. Journal of Chemical Ecology, 2018, 44, 690-699.	1.8	19
26	Olfactory Sensory Neurons of the Asian Longhorned Beetle, Anoplophora glabripennis, Specifically Responsive to its two Aggregation-Sex Pheromone Components. Journal of Chemical Ecology, 2018, 44, 637-649.	1.8	8
27	Host-plant induced changes in microbial community structure and midgut gene expression in an invasive polyphage (Anoplophora glabripennis). Scientific Reports, 2018, 8, 9620.	3.3	22
28	Herbivore-Induced Defenses in Tomato Plants Enhance the Lethality of the Entomopathogenic Bacterium, Bacillus thuringiensis var. kurstaki. Journal of Chemical Ecology, 2018, 44, 947-956.	1.8	8
29	Plant-mediated effects on an insect–pathogen interaction vary with intraspecific genetic variation in plant defences. Oecologia, 2017, 183, 1121-1134.	2.0	29
30	<i>Helicoverpa zea</i> gutâ€essociated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor(s). New Phytologist, 2017, 214, 1294-1306.	7.3	72
31	Plant genotype and induced defenses affect the productivity of an insect-killing obligate viral pathogen. Journal of Invertebrate Pathology, 2017, 148, 34-42.	3.2	9
32	Fall Armyworm-Associated Gut Bacteria Modulate Plant Defense Responses. Molecular Plant-Microbe Interactions, 2017, 30, 127-137.	2.6	119
33	Within gut physicochemical variation does not correspond to distinct resident fungal and bacterial communities in the tree-killing xylophage, Anoplophora glabripennis. Journal of Insect Physiology, 2017, 102, 27-35.	2.0	10
34	Effects of Temperature on Development of Lymantria dispar asiatica and Lymantria dispar japonica (Lepidoptera: Erebidae). Environmental Entomology, 2017, 46, 1012-1023.	1.4	22
35	Genome Sequence of Fusarium Isolate MYA-4552 from the Midgut of Anoplophora glabripennis , an Invasive, Wood-Boring Beetle. Genome Announcements, 2016, 4, .	0.8	11
36	Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biology, 2016, 17, 227.	8.8	244

#	Article	IF	CITATIONS
37	Sensory Aspects of Trail-Following Behaviors in the Asian Longhorned Beetle, Anoplophora glabripennis. Journal of Insect Behavior, 2016, 29, 615-628.	0.7	19
38	Contrasting diets reveal metabolic plasticity in the tree-killing beetle, Anoplophora glabripennis (Cerambycidae: Lamiinae). Scientific Reports, 2016, 6, 33813.	3.3	21
39	Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants. Journal of Chemical Ecology, 2016, 42, 463-474.	1.8	44
40	Host Range Specificity of <i>Scymnus camptodromus</i> (Coleoptera: Coccinellidae), A Predator of Hemlock Woolly Adelgid (Hemiptera: Adelgidae). Environmental Entomology, 2016, 45, 94-100.	1.4	4
41	Comparative study of radio-frequency and microwave heating for phytosanitary treatment of wood. European Journal of Wood and Wood Products, 2016, 74, 491-500.	2.9	16
42	Essential Amino Acid Supplementation by Gut Microbes of a Wood-Feeding Cerambycid. Environmental Entomology, 2016, 45, 66-73.	1.4	55
43	Asian Longhorned Beetle (Coleoptera: Cerambycidae), an Introduced Pest of Maple and Other Hardwood Trees in North America and Europe. Journal of Integrated Pest Management, 2015, 6, .	2.0	100
44	Scymnus camptodromus (Coleoptera: Coccinellidae) Larval Development and Predation of Hemlock Woolly Adelgid (Hemiptera: Adelgidae). Environmental Entomology, 2015, 44, 81-89.	1.4	5
45	Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora) Tj ETQq1 1 0.78431 beetles. BMC Genomics, 2014, 15, 1096.	.4 rgBT /C 2.8	Verlock 10 93
46	Effects of Pheromone and Plant Volatile Release Rates and Ratios on TrappingAnoplophora glabripennis(Coleoptera: Cerambycidae) in China. Environmental Entomology, 2014, 43, 1379-1388.	1.4	32
47	Gut Microbes Contribute to Nitrogen Provisioning in a Wood-Feeding Cerambycid. Environmental Entomology, 2014, 43, 903-912.	1.4	55
48	Development and Evaluation of a Trapping System for <i>Anoplophora glabripennis</i> (Coleoptera:) Tj ETQq0 0 0	rgBT /Ov £4	erlock 10 Tf
49	Sex-Specific Trail Pheromone Mediates Complex Mate Finding Behavior in Anoplophora glabripennis. Journal of Chemical Ecology, 2014, 40, 169-180.	1.8	33
50	Cross-species transmission of honey bee viruses in associated arthropods. Virus Research, 2013, 176, 232-240.	2.2	120
51	Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle. BMC Genomics, 2013, 14, 850.	2.8	65
52	Diversity of proteobacterial endosymbionts in hemlock woolly adelgid (<i><scp>A</scp>delges) Tj ETQq0 0 0 rgB Environmental Microbiology, 2013, 15, 2043-2062.</i>	T /Overloo 3.8	ck 10 Tf 50 1 46
53	Lethal temperature for pinewood nematode, Bursaphelenchus xylophilus, in infested wood using radio frequency (RF) energy. Journal of Wood Science, 2013, 59, 160-170.	1.9	13
54	Colorado potato beetle manipulates plant defenses in local and systemic leaves. Plant Signaling and Behavior, 2013, 8, e27592.	2.4	34

#	Article	IF	CITATIONS
55	Herbivore exploits orally secreted bacteria to suppress plant defenses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15728-15733.	7.1	386
56	Metagenomic Profiling Reveals Lignocellulose Degrading System in a Microbial Community Associated with a Wood-Feeding Beetle. PLoS ONE, 2013, 8, e73827.	2.5	125
57	Phylogenetic Analysis of Fusarium solani Associated with the Asian Longhorned Beetle, Anoplophora glabripennis. Insects, 2012, 3, 141-160.	2.2	20
58	Baculoviruses and Other Occluded Insect Viruses. , 2012, , 73-131.		49
59	Proteomic Analysis of Fusarium solani Isolated from the Asian Longhorned Beetle, Anoplophora glabripennis. PLoS ONE, 2012, 7, e32990.	2.5	33
60	Protein Tyrosine Phosphatase-Induced Hyperactivity Is a Conserved Strategy of a Subset of BaculoViruses to Manipulate Lepidopteran Host Behavior. PLoS ONE, 2012, 7, e46933.	2.5	66
61	A Gene for an Extended Phenotype. Science, 2011, 333, 1401-1401.	12.6	185
62	Seeking alternatives to probit 9 when developing treatments for wood packaging materials under ISPM No. 15. EPPO Bulletin, 2011, 41, 39-45.	0.8	19
63	Appropriateness of Probit-9 in the Development of Quarantine Treatments for Timber and Timber Commodities. Journal of Economic Entomology, 2011, 104, 717-731.	1.8	42
64	Contributions of immune responses to developmental resistance in Lymantria dispar challenged with baculovirus. Journal of Insect Physiology, 2010, 56, 1167-1177.	2.0	50
65	Identification of proteins involved in lignocellulose degradation using in gel zymogram analysis combined with mass spectroscopyâ€based peptide analysis of gut proteins from larval Asian longhorned beetles, <i>Anoplophora glabripennis</i> . Insect Science, 2010, 17, 253-264.	3.0	48
66	Effects of single and mixed infections with wild type and genetically modified <i>Helicoverpa armigera</i> nucleopolyhedrovirus on movement behaviour of cotton bollworm larvae. Entomologia Experimentalis Et Applicata, 2010, 135, 56-67.	1.4	11
67	Pathogenesis of Lymantria dispar multiple nucleopolyhedrovirus in L. dispar and mechanisms of developmental resistance. Journal of General Virology, 2010, 91, 1590-1600.	2.9	29
68	Dose dependency of time to death in single and mixed infections with a wildtype and egt deletion strain of Helicoverpa armigera nucleopolyhedrovirus. Journal of Invertebrate Pathology, 2010, 104, 44-50.	3.2	20
69	Impact of viral enhancin genes on potency of Lymantria dispar multiple nucleopolyhedrovirus in L. dispar following disruption of the peritrophic matrix. Journal of Invertebrate Pathology, 2010, 104, 150-152.	3.2	28
70	Evaluating the Use of Male-Produced Pheromone Components and Plant Volatiles in Two Trap Designs to Monitor <i>Anoplophora glabripennis</i> . Environmental Entomology, 2010, 39, 169-176.	1.4	69
71	Lethal temperature for pinewood nematode, Bursaphelenchus xylophilus, in infested wood using microwave energy. Journal of Nematology, 2010, 42, 101-10.	0.9	11
72	Specificity of developmental resistance in gypsy moth (Lymantria dispar) to two DNA-insect viruses. Virologica Sinica, 2009, 24, 493-500.	3.0	3

#	Article	IF	CITATIONS
73	Microbial Community Profiling to Investigate Transmission of Bacteria Between Life Stages of the Wood-Boring Beetle, Anoplophora glabripennis. Microbial Ecology, 2009, 58, 199-211.	2.8	42
74	Attraction ofAnoplophora glabripennisto Male-Produced Pheromone and Plant Volatiles. Environmental Entomology, 2009, 38, 1745-1755.	1.4	50
75	Effect of Host Tree Species on Cellulase Activity and Bacterial Community Composition in the Gut of Larval Asian Longhorned Beetle. Environmental Entomology, 2009, 38, 686-699.	1.4	64
76	Plant-mediated alteration of the peritrophic matrix and baculovirus infection in lepidopteran larvae. Journal of Insect Physiology, 2008, 54, 737-749.	2.0	51
77	Lignin degradation in wood-feeding insects. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12932-12937.	7.1	279
78	Intrastadial developmental resistance of third instar gypsy moths (Lymantria dispar L.) to L. dispar nucleopolyhedrovirus. Biological Control, 2007, 40, 355-361.	3.0	33
79	Induction of Systemic Acquired Resistance in Cotton Foliage Does Not Adversely Affect the Performance of an Entomopathogen. Journal of Chemical Ecology, 2007, 33, 1570-1581.	1.8	10
80	Efficacy of radio frequency treatment and its potential for control of sapstain and wood decay fungi on red oak, poplar, and southern yellow pine wood species. Journal of Wood Science, 2007, 53, 258-263.	1.9	12
81	Plant-mediated effects in insect–pathogen interactions. Trends in Ecology and Evolution, 2006, 21, 278-286.	8.7	233
82	Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomologia Experimentalis Et Applicata, 2006, 120, 175-188.	1.4	133
83	Methyl Jasmonate Application Induces Increased Densities of Glandular Trichomes on Tomato, Lycopersicon esculentum. Journal of Chemical Ecology, 2005, 31, 2211-2216.	1.8	175
84	Complete development of Anoplophora glabripennis (Coleoptera: Cerambycidae) in northern red oak trees. Canadian Entomologist, 2005, 137, 376-379.	0.8	12
85	Host tree resistance against the polyphagous wood-boring beetle Anoplophora glabripennis. Entomologia Experimentalis Et Applicata, 2004, 110, 79-86.	1.4	52
86	Behavior of Adult Anoplophora glabripennis on Different Tree Species Under Greenhouse Conditions. Journal of Insect Behavior, 2004, 17, 215-226.	0.7	28
87	Assessing the Integrated Pest Management Practices of Pennsylvania Nursery Operations. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 297-302.	1.0	7
88	Assessing the Intergrated Pest Management Practices of Pennsylvania, U.S., Landscape Companies. Arboriculture and Urban Forestry, 2004, 30, 253-260.	0.6	0
89	Oviposition Preference and Larval Performance of <1>Anoplophora glabripennis (Coleoptera:) Tj ETQq1 1 0.78 2003, 32, 1028-1034.	4314 rgBT 1.4	7 /Overlock 46
90	Systemic component to intrastadial developmental resistance in Lymantria dispar to its baculovirus. Biological Control, 2002, 25, 92-98.	3.0	35

#	Article	IF	CITATIONS
91	Destruction of bacterial spores by phenomenally high efficiency non-contact ultrasonic transducers. Materials Research Innovations, 2002, 6, 291-295.	2.3	18
92	Methods to Evaluate Host Tree Suitability to the Asian Longhorned Beetle, Anoplophora glabripennis. Journal of Environmental Horticulture, 2002, 20, 175-180.	0.5	15
93	Midgut-based resistance of Heliothis virescens to baculovirus infection mediated by phytochemicals in cotton. Journal of Insect Physiology, 2000, 46, 999-1007.	2.0	99
94	Inhibition of Baculoviral Disease by Plant-Mediated Peroxidase Activity and Free Radical Generation. Journal of Chemical Ecology, 1998, 24, 1949-2001.	1.8	52
95	Title is missing!. Journal of Chemical Ecology, 1998, 24, 253-271.	1.8	44
96	Title is missing!. Journal of Chemical Ecology, 1998, 24, 221-252.	1.8	34
97	Dietary Protein and Chlorogenic Acid Effect on Baculoviral Disease of Noctuid (Lepidoptera:) Tj ETQq1 1 0.784314	rgBT /Ove 1:4	erlock 10 Tf
98	Interactions of Recombinant and Wild-Type Baculoviruses with Classical Insecticides and Pyrethroid-Resistant Tobacco Budworm (Lepidoptera: Noctuidae). Journal of Economic Entomology, 1997, 90, 1170-1180.	1.8	55
99	Effects of Diet-Age and Streptomycin on Virulence ofAutographa californicaM Nucleopolyhedrovirus against the Tobacco Budworm. Journal of Invertebrate Pathology, 1997, 69, 46-50.	3.2	9
100	Construction and Characterization of Immediate Early Baculovirus Pesticides. Biological Control, 1996, 7, 228-235.	3.0	26
101	TRANSMISSION OF THE PITCH CANKER FUNGUS, <i>FUSARIUM SUBGLUTINANS</i> F. SP. <i>PINI</i> , TO MONTEREY PINE, <i>PINUS RADIATA</i> , BY CONE- AND TWIG-INFESTING BEETLES. Canadian Entomologist, 1996, 128, 981-994.	0.8	36
102	QUANTITATIVE AND SEASONAL ASSOCIATION OF THE PITCH CANKER FUNGUS, <i>FUSARIUM SUBGLUTINANS</i> F. SP. <i>PINI</i> WITH <i>CONOPHTHORUS RADIATAE</i> (COLEOPTERA: SCOLYTIDAE) AND <i>ERNOBIUS PUNCTULATUS</i> (COLEOPTERA: ANOBIIDAE) WHICH INFEST <i>PINUS RADIATA</i> . Canadian Entomologist, 1995, 127, 79-91.	0.8	25
103	Reduction in Damage to Cotton Plants by a Recombinant Baculovirus That Knocks Moribund Larvae of Heliothis virescens Off the Plant. Biological Control, 1995, 5, 419-426.	3.0	62
104	Production of Polyhedra of the Autographa californica Nuclear Polyhedrosis Virus Using the Sf21 and Tn5B1-4 Cell Lines and Comparison with Host-Derived Polyhedra by Bioassay. Journal of Invertebrate Pathology, 1995, 66, 224-230.	3.2	22