List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/712677/publications.pdf Version: 2024-02-01

SONCI HAN

#	Article	IF	CITATIONS
1	RNA stores tau reversibly in complex coacervates. PLoS Biology, 2017, 15, e2002183.	5.6	235
2	para-Hydrogen-Induced Polarization in Heterogeneous Hydrogenation Reactions. Journal of the American Chemical Society, 2007, 129, 5580-5586.	13.7	160
3	Overhauser Dynamic Nuclear Polarization To Study Local Water Dynamics. Journal of the American Chemical Society, 2009, 131, 4641-4647.	13.7	152
4	Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites. Journal of the American Chemical Society, 2017, 139, 16875-16884.	13.7	129
5	Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser. Nature, 2012, 489, 409-413.	27.8	125
6	A new model for Overhauser enhanced nuclear magnetic resonance using nitroxide radicals. Journal of Chemical Physics, 2007, 127, 104508.	3.0	121
7	Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. ELife, 2019, 8, .	6.0	111
8	Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics. Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, 74, 33-56.	7.5	110
9	Surface chemical heterogeneity modulates silica surface hydration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2890-2895.	7.1	105
10	Amplification of xenon NMR and MRI by remote detection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9122-9127.	7.1	98
11	Dehydration entropy drives liquid-liquid phase separation by molecular crowding. Communications Chemistry, 2020, 3, .	4.5	97
12	Site-Specific Hydration Dynamics in the Nonpolar Core of a Molten Globule by Dynamic Nuclear Polarization of Water. Journal of the American Chemical Society, 2011, 133, 5987-5995.	13.7	96
13	Hyperpolarized water as an authentic magnetic resonance imaging contrast agent. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1754-1759.	7.1	94
14	Nature of Interactions between PEO-PPO-PEO Triblock Copolymers and Lipid Membranes: (II) Role of Hydration Dynamics Revealed by Dynamic Nuclear Polarization. Biomacromolecules, 2012, 13, 2624-2633.	5.4	85
15	Cofactors are essential constituents of stable and seeding-active tau fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13234-13239.	7.1	84
16	The Role of Backbone Polarity on Aggregation and Conduction of Ions in Polymer Electrolytes. Journal of the American Chemical Society, 2020, 142, 7055-7065.	13.7	80
17	DMSO Induces Dehydration near Lipid Membrane Surfaces. Biophysical Journal, 2015, 109, 330-339.	0.5	78
18	Microfluidic gas-flow profiling using remote-detection NMR. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14960-14963.	7.1	75

#	Article	IF	CITATIONS
19	Liquid-Liquid Phase Separation of Tau Driven by Hydrophobic Interaction Facilitates Fibrillization of Tau. Journal of Molecular Biology, 2021, 433, 166731.	4.2	75
20	Intrinsic Surfaceâ€Drying Properties of Bioadhesive Proteins. Angewandte Chemie - International Edition, 2014, 53, 11253-11256.	13.8	72
21	Determining the Oligomeric Structure of Proteorhodopsin by Gd3+-Based Pulsed Dipolar Spectroscopy of Multiple Distances. Structure, 2014, 22, 1677-1686.	3.3	72
22	Hydration dynamics as an intrinsic ruler for refining protein structure at lipid membrane interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16838-16843.	7.1	71
23	Electrostatically Driven Complex Coacervation and Amyloid Aggregation of Tau Are Independent Processes with Overlapping Conditions. ACS Chemical Neuroscience, 2020, 11, 615-627.	3.5	70
24	Protein structural and surface water rearrangement constitute major events in the earliest aggregation stages of tau. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E127-36.	7.1	69
25	Signature of an aggregation-prone conformation of tau. Scientific Reports, 2017, 7, 44739.	3.3	69
26	Time-of-Flight Flow Imaging Using NMR Remote Detection. Physical Review Letters, 2005, 95, 075503.	7.8	68
27	Portable X-band system for solution state dynamic nuclear polarization. Journal of Magnetic Resonance, 2008, 191, 273-281.	2.1	64
28	Spatially Heterogeneous Surface Water Diffusivity around Structured Protein Surfaces at Equilibrium. Journal of the American Chemical Society, 2017, 139, 17890-17901.	13.7	60
29	Heparin-induced tau filaments are structurally heterogeneous and differ from Alzheimer's disease filaments. Chemical Communications, 2018, 54, 4573-4576.	4.1	60
30	Anomalously Rapid Hydration Water Diffusion Dynamics Near DNA Surfaces. Journal of the American Chemical Society, 2015, 137, 12013-12023.	13.7	59
31	The proline-rich domain promotes Tau liquid–liquid phase separation in cells. Journal of Cell Biology, 2020, 219, .	5.2	58
32	Hydration Dynamics of a Peripheral Membrane Protein. Journal of the American Chemical Society, 2016, 138, 11526-11535.	13.7	57
33	Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces. Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 523-557.	6.8	57
34	Local Water Dynamics in Coacervated Polyelectrolytes Monitored through Dynamic Nuclear Polarization-Enhanced ¹ H NMR. Macromolecules, 2009, 42, 7404-7412.	4.8	55
35	Molecular and structural basis of low interfacial energy of complex coacervates in water. Advances in Colloid and Interface Science, 2017, 239, 61-73.	14.7	54
36	Water Dynamics from the Surface to the Interior of a Supramolecular Nanostructure. Journal of the American Chemical Society, 2017, 139, 8915-8921.	13.7	53

#	Article	IF	CITATIONS
37	NMR-Based Biosensing with Optimized Delivery of Polarized129Xe to Solutions. Analytical Chemistry, 2005, 77, 4008-4012.	6.5	52
38	Structural Insight into Proteorhodopsin Oligomers. Biophysical Journal, 2013, 104, 472-481.	0.5	51
39	Probing the hydration water diffusion of macromolecular surfaces and interfaces. New Journal of Physics, 2011, 13, 015006.	2.9	50
40	NMR Analysis on Microfluidic Devices by Remote Detection. Analytical Chemistry, 2005, 77, 8109-8114.	6.5	49
41	Transmembrane Protein Activation Refined by Siteâ€Specific Hydration Dynamics. Angewandte Chemie - International Edition, 2013, 52, 1953-1958.	13.8	49
42	Bicontinuous Fluid Structure with Low Cohesive Energy: Molecular Basis for Exceptionally Low Interfacial Tension of Complex Coacervate Fluids. ACS Nano, 2016, 10, 5051-5062.	14.6	49
43	Dynamics and state of lipid bilayer-internal water unraveled with solution state 1H dynamic nuclear polarization. Physical Chemistry Chemical Physics, 2011, 13, 7732.	2.8	48
44	DAC-board based X-band EPR spectrometer with arbitrary waveform control. Journal of Magnetic Resonance, 2013, 235, 95-108.	2.1	48
45	Fluidity and water in nanoscale domains define coacervate hydrogels. Chemical Science, 2014, 5, 58-67.	7.4	48
46	Effect of electron spin dynamics on solid-state dynamic nuclear polarization performance. Physical Chemistry Chemical Physics, 2014, 16, 18694-18706.	2.8	47
47	Proton-Based Structural Analysis of a Heptahelical Transmembrane Protein in Lipid Bilayers. Journal of the American Chemical Society, 2017, 139, 13006-13012.	13.7	47
48	Trigonal Bipyramidal V ³⁺ Complex as an Optically Addressable Molecular Qubit Candidate. Journal of the American Chemical Society, 2020, 142, 20400-20408.	13.7	46
49	Spin-labeled gel for the production of radical-free dynamic nuclear polarization enhanced molecules for NMR spectroscopy and imaging. Journal of Magnetic Resonance, 2008, 190, 307-315.	2.1	45
50	Ultrasensitive Detection of Interfacial Water Diffusion on Lipid Vesicle Surfaces at Molecular Length Scales. Journal of the American Chemical Society, 2009, 131, 18254-18256.	13.7	45
51	A 200 GHz dynamic nuclear polarization spectrometer. Physical Chemistry Chemical Physics, 2010, 12, 5920.	2.8	45
52	Dynamic Nuclear Polarization Enhanced Nuclear Magnetic Resonance and Electron Spin Resonance Studies of Hydration and Local Water Dynamics in Micelle and Vesicle Assemblies. Langmuir, 2008, 24, 10062-10072.	3.5	43
53	Decoupling Bulk Mechanics and Mono- and Multivalent Ion Transport in Polymers Based on Metal–Ligand Coordination. Chemistry of Materials, 2018, 30, 5759-5769.	6.7	43
54	Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation. Physical Chemistry Chemical Physics, 2009, 11, 6833.	2.8	42

#	Article	IF	CITATIONS
55	Continuous flow Overhauser dynamic nuclear polarization of water in the fringe field of a clinical magnetic resonance imaging system for authentic image contrast. Journal of Magnetic Resonance, 2010, 205, 247-254.	2.1	42
56	Quantitative analysis of zero-field splitting parameter distributions in Gd(<scp>iii</scp>) complexes. Physical Chemistry Chemical Physics, 2018, 20, 10470-10492.	2.8	42
57	Hyperpolarized Water as an MR Imaging Contrast Agent: Feasibility of in Vivo Imaging in a Rat Model. Radiology, 2012, 265, 418-425.	7.3	41
58	Dynamic Nuclear Polarization Methods in Solids and Solutions to Explore Membrane Proteins and Membrane Systems. Annual Review of Physical Chemistry, 2013, 64, 507-532.	10.8	41
59	Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces. Journal of Chemical Physics, 2016, 145, 041101.	3.0	40
60	Functional Consequences of the Oligomeric Assembly of Proteorhodopsin. Journal of Molecular Biology, 2015, 427, 1278-1290.	4.2	39
61	Photophysical properties of [N]phenylenes. Physical Chemistry Chemical Physics, 2002, 4, 2156-2161.	2.8	38
62	Nanometerâ€Scale Water―and Protonâ€Diffusion Heterogeneities across Water Channels in Polymer Electrolyte Membranes. Angewandte Chemie - International Edition, 2015, 54, 3615-3620.	13.8	38
63	Surface water retardation around single-chain polymeric nanoparticles: critical for catalytic function?. Chemical Science, 2016, 7, 2011-2015.	7.4	38
64	Arbitrary waveform modulated pulse EPR at 200 GHz. Journal of Magnetic Resonance, 2017, 279, 81-90.	2.1	38
65	A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument. Journal of Magnetic Resonance, 2016, 264, 131-153.	2.1	37
66	Specific Ions Modulate Diffusion Dynamics of Hydration Water on Lipid Membrane Surfaces. Journal of the American Chemical Society, 2014, 136, 2642-2649.	13.7	36
67	Extending the distance range accessed with continuous wave EPR with Gd3+ spin probes at high magnetic fields. Physical Chemistry Chemical Physics, 2013, 15, 11313.	2.8	35
68	Effect of electron spectral diffusion on static dynamic nuclear polarization at 7 Tesla. Physical Chemistry Chemical Physics, 2017, 19, 3596-3605.	2.8	35
69	Tau-Cofactor Complexes as Building Blocks of Tau Fibrils. Frontiers in Neuroscience, 2019, 13, 1339.	2.8	35
70	NMR Imaging of Falling Water Drops. Physical Review Letters, 2001, 87, 144501.	7.8	34
71	Nonlinear Scaling of Surface Water Diffusion with Bulk Water Viscosity of Crowded Solutions. Journal of the American Chemical Society, 2013, 135, 4175-4178.	13.7	34
72	Liquid–liquid phase separation of Tau by self and complex coacervation. Protein Science, 2021, 30, 1393-1407.	7.6	34

#	Article	IF	CITATIONS
73	Mussel Coating Protein-Derived Complex Coacervates Mitigate Frictional Surface Damage. ACS Biomaterials Science and Engineering, 2015, 1, 1121-1128.	5.2	33
74	Stability of Protein-Specific Hydration Shell on Crowding. Journal of the American Chemical Society, 2016, 138, 5392-5402.	13.7	33
75	An ultrasensitive tool exploiting hydration dynamics to decipher weak lipid membrane–polymer interactions. Journal of Magnetic Resonance, 2012, 215, 115-119.	2.1	32
76	Asymmetric Collapse in Biomimetic Complex Coacervates Revealed by Local Polymer and Water Dynamics. Biomacromolecules, 2013, 14, 1395-1402.	5.4	32
77	Correlating steric hydration forces with water dynamics through surface force and diffusion NMR measurements in a lipid–DMSO–H ₂ O system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10708-10713.	7.1	32
78	Light-Switchable and Self-Healable Polymer Electrolytes Based on Dynamic Diarylethene and Metal-Ion Coordination. Journal of the American Chemical Society, 2021, 143, 1562-1569.	13.7	31
79	Tau Aggregation Propensity Engrained in Its Solution State. Journal of Physical Chemistry B, 2015, 119, 14421-14432.	2.6	30
80	Simple peptide coacervates adapted for rapid pressure-sensitive wet adhesion. Soft Matter, 2017, 13, 9122-9131.	2.7	29
81	Truncated Cross Effect Dynamic Nuclear Polarization: An Overhauser Effect Doppelgäger. Journal of Physical Chemistry Letters, 2018, 9, 2175-2180.	4.6	29
82	Cross-Effect Dynamic Nuclear Polarization Explained: Polarization, Depolarization, and Oversaturation. Journal of Physical Chemistry Letters, 2019, 10, 548-558.	4.6	29
83	Dynamic nuclear polarization of 13C in aqueous solutions under ambient conditions. Journal of Magnetic Resonance, 2009, 201, 137-145.	2.1	28
84	Solution-State Dynamic Nuclear Polarization. Annual Reports on NMR Spectroscopy, 2011, , 83-126.	1.5	27
85	Balancing dipolar and exchange coupling in biradicals to maximize cross effect dynamic nuclear polarization. Physical Chemistry Chemical Physics, 2020, 22, 13569-13579.	2.8	27
86	Mechanisms of Heparin-Induced Tau Aggregation Revealed by a Single Nanopore. ACS Sensors, 2020, 5, 1158-1167.	7.8	27
87	Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin. Physical Chemistry Chemical Physics, 2013, 15, 15106.	2.8	26
88	Cholesterol enhances surface water diffusion of phospholipid bilayers. Journal of Chemical Physics, 2014, 141, 22D513.	3.0	26
89	Effect of water/glycerol polymorphism on dynamic nuclear polarization. Physical Chemistry Chemical Physics, 2018, 20, 9897-9903.	2.8	26
90	In situ observation of diffusion and reaction dynamics in gel microreactors by chemically resolved NMR microscopy. Applied Magnetic Resonance, 2002, 22, 235.	1.2	25

#	Article	IF	CITATIONS
91	Probing Water Density and Dynamics in the Chaperonin GroEL Cavity. Journal of the American Chemical Society, 2014, 136, 9396-9403.	13.7	25
92	Structure of Membrane-Bound Huntingtin Exon 1 Reveals Membrane Interaction and Aggregation Mechanisms. Structure, 2019, 27, 1570-1580.e4.	3.3	25
93	Three-dimensional phase-encoded chemical shift MRI in the presence of inhomogeneous fields. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8845-8847.	7.1	24
94	Two-dimensional representation of position, velocity and acceleration by PFG-NMR. Applied Magnetic Resonance, 2000, 18, 101-114.	1.2	23
95	Overhauser Dynamic Nuclear Polarization Studies on Local Water Dynamics. Methods in Enzymology, 2015, 564, 457-483.	1.0	23
96	Gd3+–Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance. Physical Chemistry Chemical Physics, 2017, 19, 5127-5136.	2.8	23
97	Maximizing NMR signal per unit time by facilitating the e–e–n cross effect DNP rate. Physical Chemistry Chemical Physics, 2018, 20, 27646-27657.	2.8	23
98	End-to-End Distance Probability Distributions of Dilute Poly(ethylene oxide) in Aqueous Solution. Journal of the American Chemical Society, 2020, 142, 19631-19641.	13.7	22
99	Crossover from a Solid Effect to Thermal Mixing ¹ H Dynamic Nuclear Polarization with Trityl-OX063. Journal of Physical Chemistry Letters, 2020, 11, 3718-3723.	4.6	22
100	Two-Dimensional NMR of Velocity Exchange: VEXSY and SERPENT. Journal of Magnetic Resonance, 2001, 152, 162-167.	2.1	21
101	Overhauser dynamic nuclear polarization and molecular dynamics simulations using pyrroline and piperidine ring nitroxide radicals. Journal of Magnetic Resonance, 2009, 200, 137-141.	2.1	21
102	Heisenberg spin exchange effects of nitroxide radicals on Overhauser dynamic nuclear polarization in the low field limit at 1.5mT. Journal of Magnetic Resonance, 2010, 204, 56-63.	2.1	20
103	Ion specific effects: decoupling ion–ion and ion–water interactions. Physical Chemistry Chemical Physics, 2015, 17, 8306-8322.	2.8	20
104	Direct dynamic nuclear polarization targeting catalytically active ²⁷ Al sites. Physical Chemistry Chemical Physics, 2015, 17, 25449-25454.	2.8	20
105	Perspective of Overhauser dynamic nuclear polarization for the study of soft materials. Current Opinion in Colloid and Interface Science, 2018, 33, 72-85.	7.4	20
106	Tuning nuclear depolarization under MAS by electron <i>T</i> _{1e} . Physical Chemistry Chemical Physics, 2018, 20, 23976-23987.	2.8	20
107	Amplification of Dynamic Nuclear Polarization at 200 GHz by Arbitrary Pulse Shaping of the Electron Spin Saturation Profile. Journal of Physical Chemistry Letters, 2018, 9, 3110-3115.	4.6	20
108	Dynamic Nuclear Polarization with Vanadium(IV) Metal Centers. CheM, 2021, 7, 421-435.	11.7	20

#	Article	IF	CITATIONS
109	Evidence for Entropically Controlled Interfacial Hydration in Mesoporous Organosilicas. Journal of the American Chemical Society, 2022, 144, 1766-1777.	13.7	20
110	Pulse-Shaped Dynamic Nuclear Polarization under Magic-Angle Spinning. Journal of Physical Chemistry Letters, 2019, 10, 7781-7788.	4.6	19
111	P-Site Structural Diversity and Evolution in a Zeosil Catalyst. Journal of the American Chemical Society, 2021, 143, 1968-1983.	13.7	17
112	L-band Overhauser dynamic nuclear polarization. Journal of Magnetic Resonance, 2010, 203, 138-143.	2.1	16
113	Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained. Methods in Enzymology, 2019, 615, 131-175.	1.0	16
114	Shpol'skii spectroscopy and vibrational analysis of [N]phenylenes. Physical Chemistry Chemical Physics, 2003, 5, 4563.	2.8	15
115	Proton magnetic resonance imaging of diffusion of high- and low-molecular-weight contrast agents in opaque porous media saturated with water. Magnetic Resonance Imaging, 2004, 22, 1039-1042.	1.8	15
116	Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240GHz. Journal of Magnetic Resonance, 2012, 223, 198-206.	2.1	15
117	Overhauser dynamic nuclear polarization amplification of NMR flow imaging. Journal of Magnetic Resonance, 2012, 216, 94-100.	2.1	15
118	Overhauser dynamic nuclear polarization-enhanced NMR relaxometry. Microporous and Mesoporous Materials, 2013, 178, 113-118.	4.4	15
119	Reversal of Paramagnetic Effects by Electron Spin Saturation. Journal of Physical Chemistry C, 2018, 122, 5578-5589.	3.1	15
120	Tuning conformation and properties of peptidomimetic backbones through dual <i>N</i> / <i>C</i> _α -substitution. Chemical Communications, 2018, 54, 5237-5240.	4.1	15
121	Quantitative Analysis of Molecular Transport across Liposomal Bilayer by J-Mediated ¹³ C Overhauser Dynamic Nuclear Polarization. Analytical Chemistry, 2012, 84, 8936-8940.	6.5	14
122	Conformation-based assay of tau protein aggregation. Methods in Cell Biology, 2017, 141, 89-112.	1.1	14
123	Electron spin density matching for cross-effect dynamic nuclear polarization. Chemical Communications, 2019, 55, 7591-7594.	4.1	14
124	Functionally Active Membrane Proteins Incorporated in Mesostructured Silica Films. Journal of the American Chemical Society, 2018, 140, 3892-3906.	13.7	13
125	Biradical rotamer states tune electron J coupling and MAS dynamic nuclear polarization enhancement. Solid State Nuclear Magnetic Resonance, 2019, 101, 12-20.	2.3	13
126	¹ H Thermal Mixing Dynamic Nuclear Polarization with BDPA as Polarizing Agents. Journal of Physical Chemistry Letters, 2020, 11, 9195-9202.	4.6	13

#	Article	IF	CITATIONS
127	Local water diffusivity as a molecular probe of surface hydrophilicity. MRS Bulletin, 2014, 39, 1082-1088.	3.5	12
128	Adenosine A2a receptors form distinct oligomers in protein detergent complexes. FEBS Letters, 2016, 590, 3295-3306.	2.8	12
129	Confinement Promotes Hydrogen Bond Network Formation and Grotthuss Proton Hopping in Ion-Conducting Block Copolymers. Macromolecules, 2022, 55, 615-622.	4.8	12
130	Role of electron spin dynamics and coupling network in designing dynamic nuclear polarization. Progress in Nuclear Magnetic Resonance Spectroscopy, 2021, 126-127, 1-16.	7.5	11
131	Tau Condensates. Advances in Experimental Medicine and Biology, 2019, 1184, 327-339.	1.6	11
132	Sequence Modulates Polypeptoid Hydration Water Structure and Dynamics. Biomacromolecules, 2022, 23, 1745-1756.	5.4	11
133	Time resolved spectroscopic NMR imaging using hyperpolarized 129Xe. Journal of Magnetic Resonance, 2004, 167, 298-305.	2.1	10
134	Auxiliary probe design adaptable to existing probes for remote detection NMR, MRI, and time-of-flight tracing. Journal of Magnetic Resonance, 2006, 182, 260-272.	2.1	10
135	Phase cycling with a 240 GHz, free electron laser-powered electron paramagnetic resonance spectrometer. Physical Chemistry Chemical Physics, 2013, 15, 5707.	2.8	10
136	Heterogeneity of Network Structures and Water Dynamics in κ-Carrageenan Gels Probed by Nanoparticle Diffusometry. Langmuir, 2018, 34, 11110-11120.	3.5	10
137	Proteorhodopsin Function Is Primarily Mediated by Oligomerization in Different Micellar Surfactant Solutions. Journal of Physical Chemistry B, 2019, 123, 4180-4192.	2.6	10
138	Tuning molecular adsorption in SBA-15-type periodic mesoporous organosilicas by systematic variation of their surface polarity. Chemical Science, 2020, 11, 3702-3712.	7.4	10
139	Imaging of a mixture of hyperpolarized 3He and 129Xe. Magnetic Resonance Imaging, 2004, 22, 1077-1083.	1.8	9
140	Dynamic Nuclear Polarization Studies of Local Water Dynamics in Soft Molecular Assemblies at 9.8 GHz. Applied Magnetic Resonance, 2008, 34, 439-451.	1.2	9
141	Active cancellation – A means to zero dead-time pulse EPR. Journal of Magnetic Resonance, 2015, 261, 199-204.	2.1	9
142	Electrostatic Environment of Proteorhodopsin Affects the pKa of Its Buried Primary Proton Acceptor. Biophysical Journal, 2020, 118, 1838-1849.	0.5	9
143	Quantifying Polypeptoid Conformational Landscapes through Integrated Experiment and Simulation. Macromolecules, 2021, 54, 5011-5021.	4.8	9
144	Homo-oligomerization of the human adenosine A2A receptor is driven by the intrinsically disordered C-terminus. ELife, 2021, 10, .	6.0	8

#	Article	IF	CITATIONS
145	Location of the TEMPO Moiety of TEMPO-PC in Lipid Bilayers. Biophysical Journal, 2017, 113, 966-969.	0.5	7
146	Spectrally resolved velocity exchange spectroscopy of two-phase flow. Journal of Magnetic Resonance, 2002, 159, 36-45.	2.1	6
147	Effect of nitroxide spin probes on the transport properties of Nafion membranes. Physical Chemistry Chemical Physics, 2018, 20, 26660-26674.	2.8	6
148	Multi-step phase-cycling in a free-electron laser-powered pulsed electron paramagnetic resonance spectrometer. Physical Chemistry Chemical Physics, 2018, 20, 18097-18109.	2.8	6
149	Solid-state MAS NMR at ultra low temperature of hydrated alanine doped with DNP radicals. Journal of Magnetic Resonance, 2021, 333, 107090.	2.1	4
150	Dressed Rabi Oscillation in a Crystalline Organic Radical. Physical Review Letters, 2020, 124, 047201.	7.8	3
151	Redox-Active Polymeric Ionic Liquids with Pendant N-Substituted Phenothiazine. ACS Applied Materials & Interfaces, 2021, 13, 5319-5326.	8.0	3
152	Dynamic Nuclear Polarization-Enhanced Magnetic Resonance Analysis at X-Band Using Amplified1H Water Signal. , 0, , 161-176.		1
153	Stressing Lipid Membranes: Effects of Polymers on Membrane Structural Integrity. Materials Research Society Symposia Proceedings, 2012, 1480, 1.	0.1	1
154	Protein shapes at the core of chronic traumatic encephalopathy. Nature Structural and Molecular Biology, 2019, 26, 336-338.	8.2	1
155	Mapping Out Protein Hydration Dynamics by Overhauser Dynamic Nuclear Polarization. Biological Magnetic Resonance, 2015, , 43-74.	0.4	1
156	Oligomerization and its Effect on Function in 7-Transmembrane Proteins. Biophysical Journal, 2013, 104, 406a.	0.5	0
157	Tuning Function of the Light-Driven Proteorhodopsin Proton Pump by Formation of Oligomeric and Surfactant-Based Synthetic Complexes. Biophysical Journal, 2014, 106, 370a.	0.5	0
158	Analysis of Slow Motion by Multidimensional NMR. , 2002, , 3-14.		0
159	Spatio-Temporal Correlations in Gravity-Driven and Pressure-Driven Fluid Transport Processes. , 2002, , 423-432.		0