Tia-Lynn Ashman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7125860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The pollen virome of wild plants and its association with variation in floral traits and land use. Nature Communications, 2022, 13, 523.	12.8	22
2	Genotypic variation in floral volatiles influences floral microbiome more strongly than interactions with herbivores and mycorrhizae in strawberries. Horticulture Research, 2022, 9, .	6.3	13
3	Chromosome-scale assembly with a phased sex-determining region resolves features of early Z and W chromosome differentiation in a wild octoploid strawberry. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	11
4	Herbicides as anthropogenic drivers of ecoâ€evo feedbacks in plant communities at the agroâ€ecological interface. Molecular Ecology, 2021, 30, 5406-5421.	3.9	14
5	Pollen transfer networks reveal alien species as main heterospecific pollen donors with fitness consequences for natives. Journal of Ecology, 2021, 109, 939-951.	4.0	24
6	Integrating microbes into pollination. Current Opinion in Insect Science, 2021, 44, 48-54.	4.4	31
7	Spatially explicit depiction of a floral epiphytic bacterial community reveals role for environmental filtering within petals. MicrobiologyOpen, 2021, 10, e1158.	3.0	16
8	Recipient and donor characteristics govern the hierarchical structure of heterospecific pollen competition networks. Journal of Ecology, 2021, 109, 2329-2341.	4.0	8
9	Diversity and composition of pollen loads carried by pollinators are primarily driven by insect traits, not floral community characteristics. Oecologia, 2021, 196, 131-143.	2.0	25
10	Pollinators mediate floral microbial diversity and microbial network under agrochemical disturbance. Molecular Ecology, 2021, 30, 2235-2247.	3.9	23
11	Reply to Robson et al Current Biology, 2021, 31, R887-R888.	3.9	0
12	Pollinator effectiveness is affected by intraindividual behavioral variation. Oecologia, 2021, 197, 189-200.	2.0	13
13	Pollinators contribute to the maintenance of flowering plant diversity. Nature, 2021, 597, 688-692.	27.8	57
14	Damage and recovery from drift of synthetic-auxin herbicide dicamba depends on concentration and varies among floral, vegetative, and lifetime traits in rapid cycling Brassica rapa. Science of the Total Environment, 2021, 801, 149732.	8.0	4
15	Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell, 2021, 33, 11-26.	6.6	325
16	Widespread vulnerability of flowering plant seed production to pollinator declines. Science Advances, 2021, 7, eabd3524.	10.3	92
17	Autopolyploidy alters noduleâ€level interactions in the legume <i>–</i> rhizobium mutualism. American Journal of Botany, 2020, 107, 179-185.	1.7	16
18	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038

#	Article	IF	CITATIONS
19	Genome duplication effects on functional traits and fitness are genetic context and species dependent: studies of synthetic polyploid <i>Fragaria</i> . American Journal of Botany, 2020, 107, 262-272.	1.7	38
20	Revisiting the origin of octoploid strawberry. Nature Genetics, 2020, 52, 2-4.	21.4	58
21	Floral Pigmentation Has Responded Rapidly to Global Change in Ozone and Temperature. Current Biology, 2020, 30, 4425-4431.e3.	3.9	41
22	Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nature Communications, 2020, 11, 3999.	12.8	84
23	Effect of heterospecific pollen deposition on pollen tube growth depends on the phylogenetic relatedness between donor and recipient. AoB PLANTS, 2020, 12, plaa016.	2.3	26
24	ABA-regulated ploidy-related genes and non-structural carbon accumulation may underlie cold tolerance in tetraploid Fragaria moupinensis. Environmental and Experimental Botany, 2020, 179, 104232.	4.2	12
25	Polyploidy: A Biological Force From Cells to Ecosystems. Trends in Cell Biology, 2020, 30, 688-694.	7.9	136
26	Pollen on stigmas as proxies of pollinator competition and facilitation: complexities, caveats and future directions. Annals of Botany, 2020, 125, 1003-1012.	2.9	34
27	Polyploid plants obtain greater fitness benefits from a nutrient acquisition mutualism. New Phytologist, 2020, 227, 944-954.	7.3	22
28	Floral Color Properties of Serpentine Seep Assemblages Depend on Community Size and Species Richness. Frontiers in Plant Science, 2020, 11, 602951.	3.6	5
29	Is heterospecific pollen receipt the missing link in understanding pollen limitation of plant reproduction?. American Journal of Botany, 2020, 107, 845-847.	1.7	18
30	Consequences of invasion for pollen transfer and pollination revealed in a tropical island ecosystem. New Phytologist, 2019, 221, 142-154.	7.3	44
31	Floral organs act as environmental filters and interact with pollinators to structure the yellow monkeyflower (<i>Mimulus guttatus</i>) floral microbiome. Molecular Ecology, 2019, 28, 5155-5171.	3.9	32
32	The case for the continued use of the genus name <i>Mimulus</i> for all monkeyflowers. Taxon, 2019, 68, 617-623.	0.7	51
33	Gazing into the anthosphere: considering how microbes influence floral evolution. New Phytologist, 2019, 224, 1012-1020.	7.3	50
34	Plant traits moderate pollen limitation of introduced and native plants: a phylogenetic metaâ€analysis of global scale. New Phytologist, 2019, 223, 2063-2075.	7.3	20
35	Movers and shakers: Bumble bee foraging behavior shapes the dispersal of microbes among and within flowers. Ecosphere, 2019, 10, e02714.	2.2	37
36	Pollen on Stigmas of Herbarium Specimens: A Window into the Impacts of a Century of Environmental Disturbance on Pollen Transfer. American Naturalist, 2019, 194, 405-413.	2.1	15

#	Article	IF	CITATIONS
37	Global geographic patterns of heterospecific pollen receipt help uncover potential ecological and evolutionary impacts across plant communities worldwide. Scientific Reports, 2019, 9, 8086.	3.3	28
38	Interactive effects between donor and recipient species mediate fitness costs of heterospecific pollen receipt in a co-flowering community. Oecologia, 2019, 189, 1041-1047.	2.0	37
39	Associative learning of flowers by generalist bumble bees can be mediated by microbes on the petals. Behavioral Ecology, 2019, 30, 746-755.	2.2	38
40	The role of alien species on plant-floral visitor network structure in invaded communities. PLoS ONE, 2019, 14, e0218227.	2.5	22
41	Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. New Phytologist, 2019, 221, 2286-2297.	7.3	84
42	Coding-Complete Genome Sequence of a Pollen-Associated Virus Belonging to the Secoviridae Family Recovered from a Japanese Apricot (Prunus mume) Metagenome Data Set. Microbiology Resource Announcements, 2019, 8, .	0.6	2
43	Higher ploidy is associated with reduced range breadth in the Potentilleae tribe. American Journal of Botany, 2018, 105, 700-710.	1.7	25
44	The effects of host species and sexual dimorphism differ among root, leaf and flower microbiomes of wild strawberries in situ. Scientific Reports, 2018, 8, 5195.	3.3	56
45	The direct effects of plant polyploidy on the legume–rhizobia mutualism. Annals of Botany, 2018, 121, 209-220.	2.9	23
46	Nitrogen fertilization differentially enhances nodulation and host growth of two invasive legume species in an urban environment. Journal of Urban Ecology, 2018, 4, .	1.5	8
47	Variation in sampling effort affects the observed richness of plant–plant interactions via heterospecific pollen transfer: implications for interpretation of pollen transfer networks. American Journal of Botany, 2018, 105, 1601-1608.	1.7	18
48	Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biology, 2018, 16, e2006062.	5.6	85
49	Plastid genomes reveal recurrent formation of allopolyploid <i>Fragaria</i> . American Journal of Botany, 2018, 105, 862-874.	1.7	39
50	Effects of heterospecific pollen from a windâ€pollinated and pesticideâ€treated plant on reproductive success of an insectâ€pollinated species. American Journal of Botany, 2018, 105, 836-841.	1.7	9
51	A Network Approach to Understanding Patterns of Coflowering in Diverse Communities. International Journal of Plant Sciences, 2018, 179, 569-582.	1.3	21
52	Considering the unintentional consequences of pollinator gardens for urban native plants: is the road to extinction paved with good intentions?. New Phytologist, 2017, 215, 1298-1305.	7.3	21
53	Genetic Mapping and Phylogenetic Analysis Reveal Intraspecific Variation in Sex Chromosomes of the Virginian Strawberry. Journal of Heredity, 2017, 108, 731-739.	2.4	14
54	Effects of soil metals on pollen germination, fruit production, and seeds per fruit differ between a Ni hyperaccumulator and a congeneric nonaccumulator. Plant and Soil, 2017, 420, 493-503.	3.7	7

#	Article	IF	CITATIONS
55	Presentâ€day sympatry belies the evolutionary origin of a highâ€order polyploid. New Phytologist, 2017, 216, 279-290.	7.3	13
56	Homomorphic <scp>ZW</scp> chromosomes in a wild strawberry showÂdistinctive recombination heterogeneity but a small sexâ€determining region. New Phytologist, 2016, 211, 1412-1423.	7.3	37
57	Invasion status and phylogenetic relatedness predict cost of heterospecific pollen receipt: implications for native biodiversity decline. Journal of Ecology, 2016, 104, 1003-1008.	4.0	47
58	Dioecy does not consistently accelerate or slow lineage diversification across multiple genera of angiosperms. New Phytologist, 2016, 209, 1290-1300.	7.3	37
59	Macroevolutionary patterns of ultraviolet floral pigmentation explained by geography and associated bioclimatic factors. New Phytologist, 2016, 211, 708-718.	7.3	49
60	Polyploidy and sexual system in angiosperms: Is there an association?. American Journal of Botany, 2016, 103, 1223-1235.	1.7	39
61	Patterns of among―and withinâ€species variation in heterospecific pollen receipt: The importance of ecological generalization. American Journal of Botany, 2016, 103, 396-407.	1.7	60
62	A first test of elemental allelopathy via heterospecific pollen receipt. American Journal of Botany, 2016, 103, 514-521.	1.7	12
63	An altitudinal cline in UV floral pattern corresponds with a behavioral change of a generalist pollinator assemblage. Ecology, 2015, 96, 3343-3353.	3.2	34
64	Plant–flower visitor networks in a serpentine metacommunity: assessing traits associated with keystone plant species. Arthropod-Plant Interactions, 2015, 9, 9-21.	1.1	46
65	Geographic patterns of genetic variation in three genomes of North American diploid strawberries with special reference to Fragaria vesca subsp. bracteata. Botany, 2015, 93, 573-588.	1.0	3
66	"The Strawberry Caper― American Biology Teacher, 2015, 77, 50-54.	0.2	3
67	Comparison of nuclear, plastid, and mitochondrial phylogenies and the origin of wild octoploid strawberry species. American Journal of Botany, 2015, 102, 544-554.	1.7	52
68	Floral pigmentation patterns provide an example of Gloger's rule in plants. Nature Plants, 2015, 1, 14007.	9.3	97
69	Effects of floral metal accumulation on floral visitor communities: Introducing the elemental filter hypothesis. American Journal of Botany, 2015, 102, 379-389.	1.7	19
70	Meta-Analysis of Pollen Limitation Reveals the Relevance of Pollination Generalization in the Atlantic Forest of Brazil. PLoS ONE, 2014, 9, e89498.	2.5	35
71	Heterospecific pollen receipt affects self pollen more than outcross pollen: implications for mixedâ€mating plants. Ecology, 2014, 95, 2946-2952.	3.2	30
72	Sex Determination: Why So Many Ways of Doing It?. PLoS Biology, 2014, 12, e1001899.	5.6	916

#	Article	IF	CITATIONS
73	Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Functional Ecology, 2014, 28, 868-877.	3.6	82
74	<i>Fragaria</i> : A genus with deep historical roots and ripe for evolutionary and ecological insights. American Journal of Botany, 2014, 101, 1686-1699.	1.7	149
75	Patterns of pollen quantity and quality limitation of preâ€zygotic reproduction in <i>Mimulus guttatus</i> vary with coâ€flowering community context. Oikos, 2014, 123, 1261-1269.	2.7	26
76	Evolutionary Origins and Dynamics of Octoploid Strawberry Subgenomes Revealed by Dense Targeted Capture Linkage Maps. Genome Biology and Evolution, 2014, 6, 3295-3313.	2.5	197
77	Nickel accumulation in leaves, floral organs and rewards varies by serpentine soil affinity. AoB PLANTS, 2014, 6, .	2.3	22
78	Nickel Accumulation by Streptanthus polygaloides (Brassicaceae) Reduces Floral Visitation Rate. Journal of Chemical Ecology, 2014, 40, 128-135.	1.8	27
79	Elemental composition of serpentine plants depends on habitat affinity and organ type. Journal of Plant Nutrition and Soil Science, 2014, 177, 851-859.	1.9	7
80	Variation in nickel accumulation in leaves, reproductive organs and floral rewards in two hyperaccumulating Brassicaceae species. Plant and Soil, 2014, 383, 349-356.	3.7	21
81	Bioclimatic evaluation of geographical range in <i>Fragaria</i> (Rosaceae): consequences of variation in breeding system, ploidy and species age. Botanical Journal of the Linnean Society, 2014, 176, 99-114.	1.6	42
82	Coflowering Community Context Influences Female Fitness and Alters the Adaptive Value of Flower Longevity in <i>Mimulus guttatus</i> . American Naturalist, 2014, 183, E50-E63.	2.1	36
83	Drivers of pollen limitation: macroecological interactions between breeding system, rarity, and diversity. Plant Ecology and Diversity, 2013, 6, 171-180.	2.4	25
84	Edaphic factors and plant–insect interactions: direct and indirect effects of serpentine soil on florivores and pollinators. Oecologia, 2013, 173, 1355-1366.	2.0	36
85	Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing. Molecular Phylogenetics and Evolution, 2013, 66, 17-29.	2.7	144
86	Quantitative Variation, Heritability, and Trait Correlations for Ultraviolet Floral Traits in <i>Argentina anserina</i> (Rosaceae): Implications for Floral Evolution. International Journal of Plant Sciences, 2013, 174, 1109-1120.	1.3	27
87	Predominance of self-compatibility in hummingbird-pollinated plants in the Neotropics. Die Naturwissenschaften, 2013, 100, 69-79.	1.6	38
88	Bioclimatic, ecological, and phenotypic intermediacy and high genetic admixture in a natural hybrid of octoploid strawberries. American Journal of Botany, 2013, 100, 939-950.	1.7	36
89	Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in coâ€flowering communities. American Journal of Botany, 2013, 100, 1061-1070.	1.7	180
90	Among-species differences in pollen quality and quantity limitation: implications for endemics in biodiverse hotspots. Annals of Botany, 2013, 112, 1461-1469.	2.9	47

#	Article	IF	CITATIONS
91	Community-wide assessment of pollen limitation in hummingbird-pollinated plants of a tropical montane rain forest. Annals of Botany, 2013, 112, 903-910.	2.9	35
92	Functional characterization of gynodioecy in Fragaria vesca ssp. bracteata (Rosaceae). Annals of Botany, 2012, 109, 545-552.	2.9	25
93	Gynodioecy to dioecy: are we there yet?. Annals of Botany, 2012, 109, 531-543.	2.9	105
94	A piece of the puzzle: a method for comparing pollination quality and quantity across multiple species and reproductive events. New Phytologist, 2012, 193, 532-542.	7.3	47
95	Sex ratio and subdioecy in <i>Fragaria virginiana</i> : the roles of plasticity and gene flow examined. New Phytologist, 2011, 190, 1058-1068.	7.3	32
96	Heterospecific pollen deposition: does diversity alter the consequences?. New Phytologist, 2011, 192, 738-746.	7.3	87
97	The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 2011, 43, 109-116.	21.4	1,091
98	About PAR: The distinct evolutionary dynamics of the pseudoautosomal region. Trends in Genetics, 2011, 27, 358-367.	6.7	184
99	A phylogenetically controlled analysis of the roles of reproductive traits in plant invasions. Oecologia, 2011, 166, 1009-1017.	2.0	60
100	Is reproduction of endemic plant species particularly pollen limited in biodiversity hotspots?. Oikos, 2010, 119, 1192-1200.	2.7	53
101	Comparative Genetic Mapping Points to Different Sex Chromosomes in Sibling Species of Wild Strawberry (Fragaria). Genetics, 2010, 186, 1425-1433.	2.9	49
102	Sex-allocation plasticity in hermaphrodites of sexually dimorphic Fragaria virginiana (Rosaceae). Botany, 2010, 88, 231-240.	1.0	23
103	Sources of floral scent variation. Plant Signaling and Behavior, 2009, 4, 129-131.	2.4	56
104	The sweet smell of success: floral scent affects pollinator attraction and seed fitness in <i>Hesperis matronalis</i> . Functional Ecology, 2009, 23, 480-487.	3.6	92
105	Sniffing out patterns of sexual dimorphism in floral scent. Functional Ecology, 2009, 23, 852-862.	3.6	88
106	Resources and pollinators contribute to population sexâ€ratio bias and pollen limitation in <i>Fragaria virginiana</i> (Rosaceae). Oikos, 2009, 118, 1250-1260.	2.7	21
107	Ovule number per flower in a world of unpredictable pollination. American Journal of Botany, 2009, 96, 1159-1167.	1.7	81
108	The Impact of Biochemistry vs. Population Membership on Floral Scent Profiles in Colour Polymorphic Hesperis matronalis. Annals of Botany, 2008, 102, 911-922.	2.9	63

#	Article	IF	CITATIONS
109	Flower morphology and pollinator dynamics in <i>Solanum carolinense</i> (Solanaceae): implications for the evolution of andromonoecy. American Journal of Botany, 2008, 95, 974-984.	1.7	30
110	Flower color–flower scent associations in polymorphic Hesperis matronalis (Brassicaceae). Phytochemistry, 2007, 68, 865-874.	2.9	49
111	Pollination decays in biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 956-961.	7.1	259
112	A quantitative synthesis of pollen supplementation experiments highlights the contribution of resource reallocation to estimates of pollen limitation. American Journal of Botany, 2006, 93, 271-277.	1.7	198
113	CONSEQUENCES OF VEGETATIVE HERBIVORY FOR MAINTENANCE OF INTERMEDIATE OUTCROSSING IN AN ANNUAL PLANT. Ecology, 2006, 87, 2717-2727.	3.2	45
114	Trait selection in flowering plants: how does sexual selection contribute?. Integrative and Comparative Biology, 2006, 46, 465-472.	2.0	110
115	Are flowerâ€visiting ants mutualists or antagonists? A study in a gynodioecious wild strawberry. American Journal of Botany, 2005, 92, 891-895.	1.7	45
116	The Limits on Sexual Dimorphism in Vegetative Traits in a Gynodioecious Plant. American Naturalist, 2005, 166, S5-S16.	2.1	43
117	Sexes show differential tolerance to spittlebug damage and consequences of damage for multiâ€species interactions. American Journal of Botany, 2005, 92, 1708-1713.	1.7	16
118	THE SCENT OF A MALE: THE ROLE OF FLORAL VOLATILES IN POLLINATION OF A GENDER DIMORPHIC PLANT. Ecology, 2005, 86, 2099-2105.	3.2	134
119	Pollen Limitation of Plant Reproduction: Pattern and Process. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 467-497.	8.3	888
120	Explaining phenotypic selection on plant attractive characters: male function, gender balance or ecological context?. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 553-559.	2.6	172
121	Herbivory alters the expression of a mixedâ€mating system. American Journal of Botany, 2004, 91, 1046-1051.	1.7	61
122	POLLEN LIMITATION OF PLANT REPRODUCTION: ECOLOGICAL AND EVOLUTIONARY CAUSES AND CONSEQUENCES. Ecology, 2004, 85, 2408-2421.	3.2	1,004
123	SEX-DIFFERENTIAL RESISTANCE AND TOLERANCE TO HERBIVORY IN A GYNODIOECIOUS WILD STRAWBERRY. Ecology, 2004, 85, 2550-2559.	3.2	59
124	Quantitative Character Evolution under Complicated Sexual Systems, Illustrated in GynodioeciousFragaria virginiana. American Naturalist, 2003, 162, 257-264.	2.1	13
125	THE ROLE OF HERBIVORES IN THE EVOLUTION OF SEPARATE SEXES FROM HERMAPHRODITISM. Ecology, 2002, 83, 1175-1184.	3.2	138
126	Dissecting the causes of variation in intraâ€inflorescence allocation in a sexually polymorphic species, Fragaria virginiana (Rosaceae). American Journal of Botany, 2000, 87, 197-204.	1.7	101

#	Article	IF	CITATIONS
127	Understanding the basis of pollinator selectivity in sexually dimorphic Fragaria virginiana. Oikos, 2000, 90, 347-356.	2.7	52
128	POLLINATOR SELECTIVITY AND ITS IMPLICATIONS FOR THE EVOLUTION OF DIOECY AND SEXUAL DIMORPHISM. Ecology, 2000, 81, 2577-2591.	3.2	129
129	POLLINATOR SELECTIVITY AND ITS IMPLICATIONS FOR THE EVOLUTION OF DIOECY AND SEXUAL DIMORPHISM. , 2000, 81, 2577.		1
130	Pollinator Selectivity and Its Implications for the Evolution of Dioecy and Sexual Dimorphism. Ecology, 2000, 81, 2577.	3.2	9
131	Is relative pollen production or removal a good predictor of relative male fitness? an experimental exploration with a wild strawberry (Fragaria virginiana , Rosaceae). American Journal of Botany, 1998, 85, 1166-1171.	1.7	33
132	The cost of floral longevity in Clarkia tembloriensis: An experimental investigation. Evolutionary Ecology, 1997, 11, 289-300.	1.2	116
133	Flower lifespan and disease risk. Nature, 1996, 379, 780-780.	27.8	4
134	THE EVOLUTION OF FLORAL LONGEVITY: RESOURCE ALLOCATION TO MAINTENANCE VERSUS CONSTRUCTION OF REPEATED PARTS IN MODULAR ORGANISMS. Evolution; International Journal of Organic Evolution, 1995, 49, 131-139.	2.3	81
135	Reproductive allocation in hermaphrodite and female plants of <i>Sidalcea oregana</i> SSP. <i>spicata</i> (Malvaceae) using four currencies. American Journal of Botany, 1994, 81, 433-438.	1.7	78
136	How long should flowers live?. Nature, 1994, 371, 788-791.	27.8	301
137	A Dynamic Perspective on the Physiological Cost of Reproduction in Plants. American Naturalist, 1994, 144, 300-316.	2.1	139
138	Apparent vs. effective mating in an experimental population of Raphanus sativus. Oecologia, 1993, 96, 102-107.	2.0	40
139	Variation in Floral Sex Allocation with Time of Season and Currency. Ecology, 1992, 73, 1237-1243.	3.2	88
140	Seasonal Variation in Pollination Dynamics of Sexually Dimorphic Sidalcea Oregana SSP. Spicata (Malvaceae). Ecology, 1991, 72, 993-1003.	3.2	147
141	Herbicides and their potential to disrupt plantâ€insect chemical communication. Journal of Systematics and Evolution, 0, , .	3.1	3