Andreas F Thünemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7125370/publications.pdf

Version: 2024-02-01

190 papers 11,113 citations

51 h-index 97 g-index

194 all docs

194 docs citations

times ranked

194

14397 citing authors

#	Article	lF	CITATIONS
1	Counterions determine uptake and effects of aluminum in human intestinal and liver cells. Toxicology in Vitro, 2022, 79, 105295.	2.4	1
2	Solvent Annealing of Striped Ellipsoidal Block Copolymer Particles: Reversible Control over Lamellae Asymmetry, Aspect Ratio, and Particle Surface. ACS Macro Letters, 2022, 11, 329-335.	4.8	9
3	Towards automation of the polyol process for the synthesis of silver nanoparticles. Scientific Reports, 2022, 12, 5769.	3.3	9
4	Beyond microplastics - investigation on health impacts of submicron and nanoplastic particles after oral uptake in vitro. Microplastics and Nanoplastics, 2022, 2, .	8.8	15
5	Intestinal and hepatic effects of iron oxide nanoparticles. Archives of Toxicology, 2021, 95, 895-905.	4.2	14
6	Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure. Journal of Physical Chemistry B, 2021, 125, 3398-3408.	2.6	4
7	Extending synchrotron SAXS instrument ranges through addition of a portable, inexpensive USAXS module with vertical rotation axes. Journal of Synchrotron Radiation, 2021, 28, 824-833.	2.4	6
8	Incorporation and structural arrangement of microemulsion droplets in cylindrical pores of mesoporous silica. Molecular Physics, 2021, 119 , .	1.7	3
9	From Nanoparticle Heteroclusters to Filament Networks by Self-Assembly at the Water–Oil Interface of Reverse Microemulsions. Langmuir, 2021, 37, 8876-8885.	3.5	6
10	Environmental Impact of ZnO Nanoparticles Evaluated by in Vitro Simulated Digestion. ACS Applied Nano Materials, 2020, 3, 724-733.	5.0	28
11	Zinc Phosphate Nanoparticles Produced in Saliva. European Journal of Inorganic Chemistry, 2020, 2020, 3654-3661.	2.0	1
12	The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation. ChemBioChem, 2020, 21, 3544-3554.	2.6	13
13	Amphiphilic Nanogels: Fuzzy Spheres with a Pseudo-Periodic Internal Structure. Langmuir, 2020, 36, 10979-10988.	3.5	11
14	Cellular Effects of <i>In Vitro</i> -Digested Aluminum Nanomaterials on Human Intestinal Cells. ACS Applied Nano Materials, 2020, 3, 2246-2256.	5.0	7
15	Gold Nanotriangles with Crumble Topping and their Influence on Catalysis and Surfaceâ€Enhanced Raman Spectroscopy. ChemPlusChem, 2020, 85, 519-526.	2.8	8
16	The presence of iron oxide nanoparticles in the food pigment E172. Food Chemistry, 2020, 327, 127000.	8.2	31
17	Complexation behavior of diazosulfonate polymers. , 2020, , 287-296.		O
18	Microwave-Assisted Synthesis of Ultrasmall Zinc Oxide Nanoparticles. Langmuir, 2019, 35, 12469-12482.	3.5	29

#	Article	IF	Citations
19	Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm (Tenebrio molitor) Tj ETQq $1\ 1$	0.78431	4 rgBT/Overlock
20	What happens to the silver ions? – Silver thiocyanate nanoparticle formation in an artificial digestion. Nanoscale, 2018, 10, 3650-3653.	5 . 6	6
21	Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats. Food and Chemical Toxicology, 2018, 113, 255-266.	3 . 6	17
22	Toxicological investigations of "naked―and polymer-entrapped AOT-based gold nanotriangles. Colloids and Surfaces B: Biointerfaces, 2018, 167, 560-567.	5.0	11
23	Undulated Gold Nanoplatelet Superstructures: In Situ Growth of Hemispherical Gold Nanoparticles onto the Surface of Gold Nanotriangles. Langmuir, 2018, 34, 4584-4594.	3 . 5	22
24	High-Speed but Not Magic: Microwave-Assisted Synthesis of Ultra-Small Silver Nanoparticles. Langmuir, 2018, 34, 147-153.	3 . 5	35
25	Poly(meth)acrylate-PVDF core–shell particles from emulsion polymerization: preferential formation of the PVDF β crystal phase. Polymer Chemistry, 2018, 9, 5359-5369.	3 . 9	12
26	Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal caco-2 cells. Nanotoxicology, 2018, 12, 992-1013.	3 . 0	24
27	Fate of Fluorescence Labels—Their Adsorption and Desorption Kinetics to Silver Nanoparticles. Langmuir, 2018, 34, 7153-7160.	3 . 5	4
28	Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis. RSC Advances, 2018, 8, 14377-14388.	3 . 6	36
29	Kinetic monitoring of glutathione-induced silver nanoparticle disintegration. Nanoscale, 2018, 10, 11485-11490.	5. 6	3
30	Hyperbranched poly(amidoamine)/kaolinite nanocomposites: Structure and charge carrier dynamics. Polymer, 2017, 121, 64-74.	3.8	29
31	SAXS analysis of single- and multi-core iron oxide magnetic nanoparticles. Journal of Applied Crystallography, 2017, 50, 481-488.	4.5	36
32	It takes more than a coating to get nanoparticles through the intestinal barrier in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 118, 21-29.	4.3	29
33	Dosimetric Quantification of Coating-Related Uptake of Silver Nanoparticles. Langmuir, 2017, 33, 13087-13097.	3.5	17
34	Impact of an Artificial Digestion Procedure on Aluminum-Containing Nanomaterials. Langmuir, 2017, 33, 10726-10735.	3. 5	45
35	Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison. Journal of Applied Crystallography, 2017, 50, 1280-1288.	4.5	63
36	Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects. Journal of Proteome Research, 2017, 16, 4020-4034.	3.7	34

#	Article	IF	Citations
37	Structure–Property Relationships of Nanocomposites Based on Polylactide and Layered Double Hydroxides – Comparison of MgAl and NiAl LDH as Nanofiller. Macromolecular Chemistry and Physics, 2017, 218, 1700232.	2.2	26
38	The modular small-angle X-ray scattering data correction sequence. Journal of Applied Crystallography, 2017, 50, 1800-1811.	4.5	82
39	Monitoring the fate of small silver nanoparticles during artificial digestion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 526, 76-81.	4.7	36
40	Proteomic responses of human intestinal Cacoâ€2 cells exposed to silver nanoparticles and ionic silver. Journal of Applied Toxicology, 2016, 36, 404-413.	2.8	27
41	Catalytic Reduction of 4-Nitrophenol Using Silver Nanoparticles with Adjustable Activity. Langmuir, 2016, 32, 7383-7391.	3 . 5	232
42	Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light. Nature Communications, 2016, 7, 13623.	12.8	87
43	Considerations using silver nitrate as a reference for in vitro tests with silver nanoparticles. Toxicology in Vitro, 2016, 34, 120-122.	2.4	6
44	Ostwald Ripening Growth Mechanism of Gold Nanotriangles in Vesicular Template Phases. Langmuir, 2016, 32, 10928-10935.	3.5	44
45	Control of Imine Exchange Kinetics with Photoswitches to Modulate Selfâ€Healing in Polysiloxane Networks by Light Illumination. Angewandte Chemie - International Edition, 2016, 55, 13882-13886.	13.8	123
46	In operando XAFS experiments on flexible electrochromic devices based on Fe(II)-metallo-supramolecular polyelectrolytes and vanadium oxide. Solar Energy Materials and Solar Cells, 2016, 147, 61-67.	6.2	22
47	Dendrimers with Oligospiroketal (OSK) Building Blocks: Synthesis and Properties. Chemistry - A European Journal, 2015, 21, 10466-10471.	3.3	6
48	<i>SASfit<$i\rangle$: a tool for small-angle scattering data analysis using a library of analytical expressions. Journal of Applied Crystallography, 2015, 48, 1587-1598.</i>	4.5	472
49	Characterization of Silver Nanoparticles in Cell Culture Medium Containing Fetal Bovine Serum. Langmuir, 2015, 31, 6842-6852.	3 . 5	53
50	How Hydrodynamic Fractionation Influences MPI Performance of Resovist. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	9
51	Hydrodynamic and magnetic fractionation of superparamagnetic nanoparticles for magnetic particle imaging. Journal of Magnetism and Magnetic Materials, 2015, 380, 266-270.	2.3	16
52	Structure–property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides. European Polymer Journal, 2015, 68, 338-354.	5 . 4	59
53	Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells. Biological Chemistry, 2015, 396, 1255-1264.	2.5	116
54	<i>McSAS</i> : software for the retrieval of model parameter distributions from scattering patterns. Journal of Applied Crystallography, 2015, 48, 962-969.	4.5	158

#	Article	IF	Citations
55	Structure–Property Relationships of Hyperbranched Polymer/Kaolinite Nanocomposites. Macromolecules, 2015, 48, 6562-6573.	4.8	24
56	Resolving particle size modality in bi-modal iron oxide nanoparticle suspensions. Journal of Magnetism and Magnetic Materials, 2015, 380, 140-143.	2.3	10
57	How temperature determines formation of maghemite nanoparticles. Journal of Magnetism and Magnetic Materials, 2015, 380, 163-167.	2.3	24
58	Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells. Nanotoxicology, 2014, 8, 631-642.	3.0	105
59	Thermally induced structural rearrangement of the Fe(ii) coordination geometry in metallo-supramolecular polyelectrolytes. Physical Chemistry Chemical Physics, 2014, 16, 19694-19701.	2.8	14
60	Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility. Journal of Materials Chemistry B, 2014, 2, 3626-3635.	5.8	26
61	The role of coating materials and zeta potential in iron oxide nanoparticle translocation in human intestinal cells. Toxicology Letters, 2014, 229, S194-S195.	0.8	1
62	ToFâ€SIMS and Laserâ€SNMS analysis of macrophages after exposure to silver nanoparticles. Surface and Interface Analysis, 2013, 45, 286-289.	1.8	15
63	Elucidation of the structure of poly (\hat{l}^3 -benzyl-l-glutamate) nanofibers and gel networks in a helicogenic solvent. Colloid and Polymer Science, 2013, 291, 1353-1363.	2.1	28
64	On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system. Colloids and Surfaces B: Biointerfaces, 2013, 108, 110-119.	5.0	40
65	Nanoscale reference materials for environmental, health and safety measurements: needs, gaps and opportunities. Nanotoxicology, 2013, 7, 1325-1337.	3.0	98
66	Investigations of Host–Guest Interactions with Shape-Persistent Nonionic Dendritic Micelles. Journal of Physical Chemistry C, 2013, 117, 12307-12317.	3.1	19
67	TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment. Surface and Interface Analysis, 2013, 45, 483-485.	1.8	16
68	Nitric acid-stabilized superparamagnetic iron oxide nanoparticles studied with X-rays. Journal of Nanoparticle Research, $2012, 14, 1$.	1.9	14
69	Effects of Silver Nanoparticles on Primary Mixed Neural Cell Cultures: Uptake, Oxidative Stress and Acute Calcium Responses. Toxicological Sciences, 2012, 126, 457-468.	3.1	206
70	Impurities in multicrystalline silicon wafers for solar cells detected by synchrotron micro-beam X-ray fluorescence analysis. Journal of Analytical Atomic Spectrometry, 2012, 27, 1875.	3.0	8
71	Superparamagnetic core–shell nanoparticles as solid supports for peptide synthesis. Chemical Communications, 2012, 48, 7176.	4.1	15
72	Size dependent catalysis with CTAB-stabilized gold nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 9343.	2.8	248

#	Article	IF	Citations
73	Unique Properties of Eukaryote-Type Actin and Profilin Horizontally Transferred to Cyanobacteria. PLoS ONE, 2012, 7, e29926.	2.5	7
74	Coreâ€Shell Structures of Oligosaccharideâ€Functionalized Hyperbranched Poly(ethylene imines). Macromolecular Chemistry and Physics, 2012, 213, 2362-2369.	2.2	15
75	Solution Behavior of Double-Hydrophilic Block Copolymers in Dilute Aqueous Solution. Macromolecules, 2012, 45, 4772-4777.	4.8	62
76	Amphiphilic Folded Dendrimer Discs and Their Thermosensitive Selfâ€Assembly in Water. Chemistry - A European Journal, 2012, 18, 5837-5842.	3.3	25
77	Cytotoxicity of peptide-coated silver nanoparticles on the human intestinal cell line Caco-2. Archives of Toxicology, 2012, 86, 1107-1115.	4.2	67
78	Arrangement of layered double hydroxide in a polyethylene matrix studied by a combination of complementary methods. Polymer, 2012, 53, 2245-2254.	3.8	38
79	Effect of particle size and Debye length on order parameters of colloidal silica suspensions under confinement. Soft Matter, 2011, 7, 10899.	2.7	69
80	Container-less polymerization in acoustically levitated droplets: an analytical study by GPC and MALDI-TOF mass spectrometry. Analytical Methods, 2011, 3, 70-73.	2.7	7
81	Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses. ACS Nano, 2011, 5, 3059-3068.	14.6	91
82	Structure–Property Relationships of Nanocomposites Based on Polypropylene and Layered Double Hydroxides. Macromolecules, 2011, 44, 4342-4354.	4.8	87
83	Silicification of Peptide-Coated Silver Nanoparticlesâ€"A Biomimetic Soft Chemistry Approach toward Chiral Hybrid Coreâ 'Shell Materials. ACS Nano, 2011, 5, 820-833.	14.6	55
84	Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN). Nanoscale, 2011, 3, 5168.	5.6	11
85	Compact pnCCD-Based X-ray Camera with High Spatial and Energy Resolution: A Color X-ray Camera. Analytical Chemistry, 2011, 83, 2532-2538.	6.5	131
86	On the nanostructure of micrometer-sized cellulose beads. Analytical and Bioanalytical Chemistry, 2011, 401, 1101-1108.	3.7	4
87	Processing nanoparticles with A4F-SAXS for toxicological studies: Iron oxide in cell-based assays. Journal of Chromatography A, 2011, 1218, 4160-4166.	3.7	14
88	Bond length contraction in gold nanoparticles. Analytical and Bioanalytical Chemistry, 2010, 398, 1967-1972.	3.7	19
89	Characterization of New Amphiphilic Block Copolymers of $\langle i \rangle N \langle i \rangle \hat{a} \in V$ inyl Pyrrolidone and Vinyl Acetate, 1 $\hat{a} \in W$ Analysis of Copolymer Composition, End Groups, Molar Masses and Molar Mass Distributions. Macromolecular Chemistry and Physics, 2010, 211, 869-878.	2.2	20
90	Characterization of New Amphiphilic Block Copolymers of <i>N</i> 2 â€Vinylpyrrolidone and Vinyl Acetate, 2 ―Chromatographic Separation and Analysis by MALDIâ€TOF and FTâ€IR Coupling. Macromolecular Chemistry and Physics, 2010, 211, 1678-1688.	2.2	30

#	Article	IF	CITATIONS
91	Poly(acrylic acid): A Combined Analysis with Fieldâ€Flow Fractionation and SAXS. Macromolecular Chemistry and Physics, 2010, 211, 2148-2153.	2.2	7
92	Characterization of poly(N-vinyl-2-pyrrolidone)s with broad size distributions. Polymer, 2010, 51, 1723-1727.	3.8	35
93	Synthesis, characterization and fine-tuning of bimodal poly(organosiloxane) nanoparticles. Polymer, 2010, 51, 5432-5439.	3.8	8
94	Protein refolding is required for assembly of the type three secretion needle. Nature Structural and Molecular Biology, 2010, 17, 788-792.	8.2	79
95	New insights of the nucleation and growth process of gold nanoparticles via in situ coupling of SAXS and XANES. Journal of Physics: Conference Series, 2010, 247, 012051.	0.4	22
96	Nucleation and Growth of Gold Nanoparticles Studied <i>viain situ</i> Small Angle X-ray Scattering at Millisecond Time Resolution. ACS Nano, 2010, 4, 1076-1082.	14.6	363
97	Mechanism of Gold Nanoparticle Formation in the Classical Citrate Synthesis Method Derived from Coupled In Situ XANES and SAXS Evaluation. Journal of the American Chemical Society, 2010, 132, 1296-1301.	13.7	560
98	Real-Time Monitoring of Copolymer Stabilized Growing Gold Nanoparticles. Langmuir, 2010, 26, 5889-5894.	3.5	32
99	Mechanochemical Synthesis of Metalâ^Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas. Chemistry of Materials, 2010, 22, 5216-5221.	6.7	445
100	Stable Iron Carbide Nanoparticle Dispersions in [Emim][SCN] and [Emim][N(CN)2] Ionic Liquids. Langmuir, 2010, 26, 10600-10605.	3.5	36
101	SAXS in combination with a free liquid jet for improved time-resolved in situ studies of the nucleation and growth of nanoparticles. Chemical Communications, 2010, 46, 9209.	4.1	42
102	Protein decorated membranes by specific molecular interactions. Soft Matter, 2010, 6, 2815.	2.7	28
103	Mechanistic insights into seeded growth processes of gold nanoparticles. Nanoscale, 2010, 2, 2463.	5.6	49
104	Strong anion effects on gold nanoparticle formation in ionic liquids. Journal of Materials Chemistry, 2010, 20, 1332-1339.	6.7	63
105	Peptideâ€Coated Silver Nanoparticles: Synthesis, Surface Chemistry, and pHâ€Triggered, Reversible Assembly into Particle Assemblies. Chemistry - A European Journal, 2009, 15, 5831-5844.	3.3	85
106	The size distribution of 'gold standard' nanoparticles. Analytical and Bioanalytical Chemistry, 2009, 395, 1651-1660.	3.7	46
107	Structure and endâ€group analysis of complex hexanediolâ€neopentylglycolâ€adipic acid copolyesters by matrixâ€assisted laser desorption/ionization collisionâ€induced dissociation tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 2768-2774.	1.5	26
108	Molecular switching complexes with iron and tin as central atom. Polyhedron, 2009, 28, 1818-1821.	2.2	11

#	Article	IF	Citations
109	In Situ Analysis of a Bimodal Size Distribution of Superparamagnetic Nanoparticles. Analytical Chemistry, 2009, 81, 296-301.	6.5	45
110	Temperature Response of Self-Assembled Micelles of Telechelic Hydrophobically Modified Poly(2-alkyl-2-oxazoline)s in Water. Macromolecules, 2009, 42, 2204-2214.	4.8	86
111	Online coupling of field-flow fractionation with SAXS and DLS for polymer analysis. Analytical Methods, 2009, 1, 177.	2.7	16
112	Structure analysis using acoustically levitated droplets. Analytical and Bioanalytical Chemistry, 2008, 391, 1221-1228.	3.7	65
113	Agglomeration of proteins in acoustically levitated droplets. Analytical and Bioanalytical Chemistry, 2008, 392, 161-165.	3.7	45
114	Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophysical Chemistry, 2008, 137, 35-42.	2.8	106
115	Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug–lipid physicochemical interactions and characterization of drug incorporation. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 535-544.	4.3	187
116	Superparamagnetic Maghemite Nanorods: Analysis by Coupling Field-Flow Fractionation and Small-Angle X-ray Scattering. Analytical Chemistry, 2008, 80, 5905-5911.	6.5	24
117	Poly(ethylene oxide)-block-poly(glutamic acid) coated maghemite nanoparticles:in vitrocharacterization andin vivobehaviour. Nanotechnology, 2007, 18, 115710.	2.6	25
118	Thyroid hormone (T3)-modification of polyethyleneglycol (PEG)-polyethyleneimine (PEI) graft copolymers for improved gene delivery to hepatocytes. Biomaterials, 2007, 28, 1900-1911.	11.4	21
119	Two-Compartment Micellar Assemblies Obtained via Aqueous Self-Organization of Synthetic Polymer Building Blocks. Langmuir, 2006, 22, 2506-2510.	3.5	85
120	Maghemite Nanoparticles Protectively Coated with Poly(ethylene imine) and Poly(ethylene) Tj ETQq0 0 0 rgBT /O	verlgck 10) Tf 50 302 To
121	V-Shaped Crystalline Structures of Di-n-alkyl Esters of Phosphoric Acid. Langmuir, 2006, 22, 5856-5861.	3.5	7
122	Complexes of Poly(ethylene oxide)-block-Poly(l-glutamate) and Diminazene. Langmuir, 2006, 22, 2323-2328.	3.5	12
123	Lamellar Structured Nanoparticles Formed by Complexes of a Cationic Block Copolymer and Perfluorodecanoic Acid. Macromolecules, 2006, 39, 9337-9345.	4.8	37
124	H-Bonding-Directed Self-Assembly of Synthetic Copolymers Containing Nucleobases:Â Organization and Colloidal Fusion in a Noncompetitive Solvent. Langmuir, 2006, 22, 7411-7415.	3.5	28
125	The use of an acoustic levitator to follow crystallization in small droplets by energy-dispersive X-ray diffraction. Journal of Applied Crystallography, 2006, 39, 771-773.	4.5	26
126	Uronic acids functionalized polyethyleneimine (PEI)–polyethyleneglycol (PEG)-graft-copolymers as novel synthetic gene carriers. Biomaterials, 2006, 27, 2302-2312.	11.4	44

#	Article	IF	CITATIONS
127	Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN®) versus drug nanocrystals. International Journal of Pharmaceutics, 2006, 317, 82-89.	5.2	288
128	Metallosupramolecular coordination polyelectrolytes investigated by Mössbauer spectroscopy. Hyperfine Interactions, 2006, 166, 465-468.	0.5	2
129	The solid-state architecture of a metallosupramolecular polyelectrolyte. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10202-10206.	7.1	43
130	Synthesis, structure and reactivity of the homoleptic iron(II) complex of the novel 4′-(4‴-pyridyl-N-oxide)-2,2′:6′,2″-terpyridine ligand. Inorganica Chimica Acta, 2005, 358, 3384-3390.	2.4	9
131	Alternating perpendicular 1-D channels in the supramolecular structure of the copper(II) complex [Cu(pyterpy)2](PF6)2·CH3OH·0.5 CH2Cl2 (pyterpy=4′-(4′′′-pyridyl)-2,2′:6′,2′′-terpyridin Communication, 2005, 8, 281-284.	ി ക്). Jinorga	n ½o Chemi <mark>st</mark>
132	Adsorption of Amyloid \hat{l}^2 -Peptide at Polymer Surfaces: A Neutron Reflectivity Study. ChemPhysChem, 2005, 6, 2527-2534.	2.1	39
133	Multicompartment Micelles Formed by Self-Assembly of Linear ABC Triblock Copolymers in Aqueous Medium. Angewandte Chemie - International Edition, 2005, 44, 5262-5265.	13.8	285
134	The Conformation of B18 Peptide in the Presence of Fluorinated and Alkylated Nanoparticles. ChemBioChem, 2005, 6, 280-283.	2.6	13
135	Preparation by controlled radical polymerization and self-assembly via base-recognition of synthetic polymers bearing complementary nucleobases. Journal of Polymer Science Part A, 2005, 43, 4805-4818.	2.3	65
136	Cylindrical Micelles of α-Fluorocarbon-ï‰-hydrocarbon End-Capped Poly(N-acylethylene Imine)s. Langmuir, 2005, 21, 7214-7219.	3.5	56
137	Cationic Polymer Grafted Starch from Nonsymmetrically Substituted Macroinitiators. Macromolecules, 2005, 38, 7251-7261.	4.8	10
138	DNA-like "Melting―of Adenine- and Thymine-Functionalized Synthetic Copolymers. Macromolecules, 2005, 38, 8124-8126.	4.8	58
139	Nanoscopic Structure of a Metallo-supramolecular Polyelectrolyte-Amphiphile Complex, Elucidated by X-ray Scattering and Molecular Modeling. ChemPhysChem, 2003, 4, 1095-1100.	2.1	26
140	Thin Layers of Columns of an Amphiphilic Hexa-peri-hexabenzocoronene at Silicon Wafer Surfaces. Langmuir, 2003, 19, 5036-5041.	3.5	29
141	α-Helical-within-Discotic Columnar Structures of a Complex between Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /O Society, 2003, 125, 352-356.	Overlock 10 13.7	0 Tf 50 18 <mark>7</mark> 93
142	Structure of a Liquid Crystalline Metallosupramolecular Polyelectrolyteâ^'Amphiphile Complex at the Nanoscopic Level. Langmuir, 2003, 19, 4055-4057.	3.5	49
143	Human Serum Albumin on Fluorinated Surfaces. Langmuir, 2003, 19, 7544-7550.	3.5	38
144	X-ray Reflectivity Study of an Amphiphilic Hexa-peri-hexabenzocoronene at a Structured Silicon Wafer Surface. Langmuir, 2003, 19, 10997-10999.	3.5	10

#	Article	IF	CITATIONS
145	Polyampholyte-Dressed Micelles of Fluorinated and Hydrogenated Dodecanoic Acid. Langmuir, 2002, 18, 5099-5105.	3.5	26
146	Nanoparticles of Polyampholyteâ^'Surfactant Complexes with Perfluorododecanoic Acid. Langmuir, 2002, 18, 4500-4504.	3.5	10
	Hollow nanoparticles via stepwise complexation and selective decomplexation of poly(ethylene) Tj ETQq1 1 0.78		
147	PEO-b-PMAA-(PO3H2)2, (polymer C). See http://www.rsc.org/suppdata/cc/b1/b110786k/. Chemical Communications, 2002, , 534-535.	4.1	14
148	Polyelectrolyte–surfactant complexes (synthesis, structure and materials aspects). Progress in Polymer Science, 2002, 27, 1473-1572.	24.7	232
149	Low surface energy polysiloxane complexes. Journal of Materials Chemistry, 2001, 11, 381-384.	6.7	22
150	Poly(ethylene oxide)-b-poly(ethylene imine) Dodecanoate Complexes:Â Lamellar-within-lamellar Morphologies and Nanoparticles. Macromolecules, 2001, 34, 6978-6984.	4.8	49
151	Electroluminescent Polyelectrolyteâ^'Surfactant Complexes. Langmuir, 2001, 17, 5098-5102.	3.5	50
152	pH-sensitive nanoparticles of poly(amino acid) dodecanoate complexes. International Journal of Pharmaceutics, 2001, 230, 11-24.	5.2	35
153	Nanoparticles of a polyelectrolyte–fatty acid complex: carriers for Q10 and triiodothyronine. Journal of Controlled Release, 2001, 75, 237-247.	9.9	30
154	Nano-structured materials with low surface energies formed by polyelectrolytes and fluorinated amphiphiles (PEFA). Polymer International, 2000, 49, 636-644.	3.1	21
155	A supramolecular structured complex of poly(acrylic acid) and polystyrene-block-poly(vinylbenzyltrimethylammonium chloride). Polymer International, 2000, 49, 782-786.	3.1	1
156	Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. International Journal of Pharmaceutics, 2000, 199, 167-177.	5.2	506
157	Diazosulfonate Polymer Complexes:Â Structure and Wettability. Macromolecules, 2000, 33, 5665-5671.	4.8	18
158	Thermochromism of a liquid crystalline dialkoxy substituted poly(1,4-phenylene-1,3,4-oxadiazol-2,5-diyl). Journal of Materials Chemistry, 2000, 10, 2652-2656.	6.7	12
159	Long-range ordered columns of a hexabenzo[bc,ef,hi,kl,no,qr]coronene–polysiloxane complex: towards molecular nanowires. Journal of Materials Chemistry, 2000, 10, 1325-1329.	6.7	40
160	Dielectric Relaxation of Polyacrylonitrile in Its Pristine and Cyclized Stage. Macromolecules, 2000, 33, 1790-1795.	4.8	21
161	Polyethylenimine Complexes with Retinoic Acid:  Structure, Release Profiles, and Nanoparticles. Macromolecules, 2000, 33, 6878-6885.	4.8	64
162	Complexes of Polyethyleneimine with Perfluorinated Carboxylic Acids:Â Wettability of Lamellar Structured Mesophases. Langmuir, 2000, 16, 824-828.	3.5	54

#	Article	IF	Citations
163	Immobilization of Retinoic Acid by Polyamino Acids:Â Lamellar-Structured Nanoparticles. Langmuir, 2000, 16, 850-857.	3.5	22
164	Ultrathin Solid Polyelectrolyteâ^'Surfactant Complex Films: Structure and Wettingâ€. Langmuir, 2000, 16, 8562-8567.	3.5	28
165	Rigid-Rod Complex of a Cationic Poly(p-phenylene) and a Fluorinated Amphiphile. Macromolecules, 2000, 33, 2124-2128.	4.8	25
166	Poly(ethylene oxide)-b-poly(l-lysine) Complexes with Retinoic Acid. Macromolecules, 2000, 33, 5906-5911.	4.8	76
167	Microvoids in Polyacrylonitrile Fibers:Â A Small-Angle X-ray Scattering Study. Macromolecules, 2000, 33, 1848-1852.	4.8	109
168	Lamellar Mesophases in Polyacrylonitrile:Â A Synchrotron Small-Angle X-ray Scattering Study. Macromolecules, 2000, 33, 2626-2631.	4.8	30
169	Poly(ethylene imine)n-Alkyl Carboxylate Complexes. Langmuir, 2000, 16, 9634-9638.	3.5	53
170	Layered Nanoarchitecture of a Fluorescent Polyelectrolyte Complex. Langmuir, 2000, 16, 3221-3226.	3.5	23
171	Polyelectrolyte-surfactant complexes with fluorinated surfactants: A new type of material for coatings. Journal of Coatings Technology and Research, 1999, 82, 451-455.	0.2	7
172	Nanostructured Dihexadecyldimethylammonium-Poly(1,4-phenylene-ethinylene-carboxylate): An Ionic Complex with Blue Electroluminescence. Advanced Materials, 1999, 11, 127-130.	21.0	50
173	Low Surface Energy Coatings from Waterborne Nano-Dispersions of Polymer Complexes. Advanced Materials, 1999, 11, 321-324.	21.0	59
174	Supramolecular architecture of a functionalized hexabenzocoronene and its complex with polyethyleneimine. Journal of Materials Chemistry, 1999, 9, 1055-1057.	6.7	46
175	Monodisperse Disk-Shaped Micelles of Perfluorooctadecanoic Acid. Langmuir, 1999, 15, 5426-5428.	3.5	10
176	Self-Assembled Complexes of Diazosulfonate Polymers with Low Surface Energies. Macromolecules, 1999, 32, 7414-7421.	4.8	18
177	Colloidal Complexes of Perfluorooctadecanoic Acid with Cationic Copolymers. Langmuir, 1999, 15, 6724-6727.	3.5	12
178	Surface and Solid-State Properties of a Fluorinated Polyelectrolyteâ^'Surfactant Complex. Langmuir, 1999, 15, 4867-4874.	3.5	41
179	Self-Assembly of Solid Polyelectrolyteâ^'Siliconâ^'Surfactant Complexes. Langmuir, 1998, 14, 6220-6225.	3.5	22
180	Self-Assembly of Perfluorodecanoic Acid with Cationic Copolymers:Â Ultra-Low Energy Surfaces and Mesomorphous Structures. Langmuir, 1998, 14, 4898-4903.	3.5	36

#	Article	IF	CITATIONS
181	Immobilization of Retinoic Acid by Cationic Polyelectrolytes. Langmuir, 1997, 13, 6040-6046.	3.5	19
182	The "Egg-Carton―Phase: A New Morphology of Complexes of Polyelectrolytes with Natural Lipid Mixtures. Langmuir, 1996, 12, 2111-2114.	3.5	87
183	Highly ordered materials with ultra-low surface energies: Polyelectrolyte-surfactant, complexes with fluorinated surfactants. Advanced Materials, 1996, 8, 41-45.	21.0	80
184	Polyelectrolyte-lipid complexes as membrane mimetic systems. Current Opinion in Colloid and Interface Science, 1996, 1, 667-671.	7.4	47
185	Synthesis and characterization of non-spherical gold colloids in block-copolymer micelles. Colloid and Polymer Science, 1996, 274, 795-800.	2.1	32
186	Complexation of lecithin with cationic polyelectrolytes: "Plastic membranes" as models for the structure of the cell membrane?. Langmuir, 1995, 11, 2633-2638.	3.5	102
187	Polyelectrolyte-Surfactant Complexes: A New Type of Solid, Mesomorphous Material. Macromolecules, 1994, 27, 6007-6011.	4.8	475
188	Polyelectrolyte Complexes. Advances in Polymer Science, 0, , 113-171.	0.8	325
189	Microwaveâ€Assisted Synthesis of ZnO Nanoparticles: Phase Transfer to Water. Advanced Engineering Materials, 0, , 2101276.	3.5	1
190	Rational Design of Amphiphilic Fluorinated Peptides: Evaluation of Self-Assembly Properties and Hydrogel Formation. Nanoscale, 0, , .	5.6	9