Mark L Andermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7125056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Network anatomy and in vivo physiology of visual cortical neurons. Nature, 2011, 471, 177-182.	27.8	797
2	Broadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex. Neuron, 2010, 67, 858-871.	8.1	549
3	Toward a Wiring Diagram Understanding of Appetite Control. Neuron, 2017, 95, 757-778.	8.1	391
4	Functional Specialization of Mouse Higher Visual Cortical Areas. Neuron, 2011, 72, 1025-1039.	8.1	378
5	Coupling of Total Hemoglobin Concentration, Oxygenation, and Neural Activity in Rat Somatosensory Cortex. Neuron, 2003, 39, 353-359.	8.1	360
6	Removable cranial windows for long-term imaging in awake mice. Nature Protocols, 2014, 9, 2515-2538.	12.0	336
7	Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Optics Letters, 2003, 28, 28.	3.3	320
8	Cortico-cortical projections in mouse visual cortex are functionally target specific. Nature Neuroscience, 2013, 16, 219-226.	14.8	284
9	Different Neuronal Activity Patterns Induce Different Gene Expression Programs. Neuron, 2018, 98, 530-546.e11.	8.1	262
10	Homeostatic circuits selectively gate food cue responses in insular cortex. Nature, 2017, 546, 611-616.	27.8	256
11	Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3822-3827.	7.1	207
12	Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. ELife, 2015, 4, .	6.0	199
13	Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Frontiers in Cellular Neuroscience, 2010, 4, 3.	3.7	196
14	Chronic Cellular Imaging of Entire Cortical Columns in Awake Mice Using Microprisms. Neuron, 2013, 80, 900-913.	8.1	195
15	Embodied Information Processing: Vibrissa Mechanics and Texture Features Shape Micromotions in Actively Sensing Rats. Neuron, 2008, 57, 599-613.	8.1	185
16	Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 510-514.	7.1	170
17	Dynamic GABAergic afferent modulation of AgRP neurons. Nature Neuroscience, 2016, 19, 1628-1635.	14.8	165
18	Vibrissa Resonance as a Transduction Mechanism for Tactile Encoding. Journal of Neuroscience, 2003, 23, 6499-6509.	3.6	157

Mark L Andermann

#	Article	IF	CITATIONS
19	A somatotopic map of vibrissa motion direction within a barrel column. Nature Neuroscience, 2006, 9, 543-551.	14.8	149
20	Estimation of Current and Future Physiological States in Insular Cortex. Neuron, 2020, 105, 1094-1111.e10.	8.1	142
21	Neural Correlates of Vibrissa Resonance. Neuron, 2004, 42, 451-463.	8.1	116
22	Control of arousal by the orexin neurons. Current Opinion in Neurobiology, 2013, 23, 752-759.	4.2	107
23	State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala. Nature Neuroscience, 2019, 22, 1820-1833.	14.8	103
24	A Fine-Scale Functional Logic to Convergence from Retina to Thalamus. Cell, 2018, 173, 1343-1355.e24.	28.9	86
25	Hunger-Dependent Enhancement of Food Cue Responses in Mouse Postrhinal Cortex and Lateral Amygdala. Neuron, 2016, 91, 1154-1169.	8.1	79
26	A mouse model of higher visual cortical function. Current Opinion in Neurobiology, 2014, 24, 28-33.	4.2	71
27	Bidirectional Anticipation of Future Osmotic Challenges by Vasopressin Neurons. Neuron, 2017, 93, 57-65.	8.1	63
28	Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling. Nature, 2021, 597, 245-249.	27.8	63
29	Short-term plasticity as a neural mechanism supporting memory and attentional functions. Brain Research, 2011, 1422, 66-81.	2.2	62
30	Imaging Neuronal Populations in Behaving Rodents: Paradigms for Studying Neural Circuits Underlying Behavior in the Mammalian Cortex. Journal of Neuroscience, 2013, 33, 17631-17640.	3.6	58
31	Inflammation of the Embryonic Choroid Plexus Barrier following Maternal Immune Activation. Developmental Cell, 2020, 55, 617-628.e6.	7.0	57
32	Tracking Calcium Dynamics and Immune Surveillance at the Choroid Plexus Blood-Cerebrospinal Fluid Interface. Neuron, 2020, 108, 623-639.e10.	8.1	56
33	Intermingled Ensembles in Visual Association Cortex Encode Stimulus Identity or Predicted Outcome. Neuron, 2018, 100, 900-915.e9.	8.1	53
34	Synaptic Plasticity Defect Following Visual Deprivation in Alzheimer's Disease Model Transgenic Mice. Journal of Neuroscience, 2012, 32, 8004-8011.	3.6	52
35	Preemptive Stimulation of AgRP Neurons in Fed Mice Enables Conditioned Food Seeking under Threat. Current Biology, 2016, 26, 2500-2507.	3.9	47
36	Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron, 2021, 109, 3576-3593.	8.1	45

Mark L Andermann

#	Article	IF	CITATIONS
37	Retinal Inputs to the Thalamus Are Selectively Gated by Arousal. Current Biology, 2020, 30, 3923-3934.e9.	3.9	36
38	Gating of visual processing by physiological need. Current Opinion in Neurobiology, 2018, 49, 16-23.	4.2	33
39	Cortical reactivations of recent sensory experiences predict bidirectional network changes during learning. Nature Neuroscience, 2020, 23, 981-991.	14.8	29
40	History-dependent dopamine release increases cAMP levels in most basal amygdala glutamatergic neurons to control learning. Cell Reports, 2022, 38, 110297.	6.4	18
41	Neural basis for regulation of vasopressin secretion by anticipated disturbances in osmolality. ELife, 2021, 10, .	6.0	10
42	Visual association cortex links cues with conjunctions of reward and locomotor contexts. Current Biology, 2022, 32, 1563-1576.e8.	3.9	9
43	Yummy or yucky? Ask your central amygdala. Nature Neuroscience, 2017, 20, 1321-1322.	14.8	6
44	Neuronal basis of optical imaging signals in sensory cortex. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S683-S683.	4.3	1