Hua-Jie Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7124996/publications.pdf

Version: 2024-02-01

218677 197818 2,537 61 26 49 h-index citations g-index papers 61 61 61 2044 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of defects and microstructures on tensile properties of selective laser melted Ti6Al4V alloys fabricated in the optimal process zone. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 830, 142294.	5.6	16
2	Effect of aging state on fatigue property of wrought aluminum alloys. International Journal of Fatigue, 2022, 156, 106682.	5.7	12
3	Excellent combination of strength and ductility in CoNiCr-based MP159 alloys at cryogenic temperature. Journal of Alloys and Compounds, 2022, 907, 164144.	5.5	9
4	Nanoscale precipitates with quasicrystal domains enhanced strength-ductility synergy in a Mg–6Zn–4Al–1Sn–0.5Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143425.	5.6	4
5	Anisotropic Electroplastic Effects on the Mechanical Properties of a Nano-Lamellar Austenitic Stainless Steel. Acta Metallurgica Sinica (English Letters), 2021, 34, 534-542.	2.9	13
6	Stress relaxation behaviors and mechanical properties of precipitation strengthening copper alloys. Journal of Alloys and Compounds, 2021, 861, 158537.	5.5	8
7	Effects of embedded spherical pore on the tensile properties of a selective laser melted Ti6Al4V alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 815, 141254.	5.6	21
8	Lýders strain of the fine-grained material under the electric current. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141924.	5.6	3
9	Effects of electropulsing on the microstructure and microhardness of a selective laser melted Ti6Al4V alloy. Journal of Alloys and Compounds, 2021, 875, 160044.	5.5	29
10	Laser powder bed fusion of 17–4 PHÂstainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties. Additive Manufacturing, 2021, 46, 102176.	3.0	14
11	Revealing the maximum microhardness and thickness of hardened layers for copper with various grain sizes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 778, 139113.	5.6	9
12	Enhanced very high cycle fatigue resistance of solution treated Mg–10Gd–3Y–1Zn–0.5Zr magnesium alloy containing long-period stacking ordered phase. Materialia, 2020, 11, 100672.	2.7	8
13	Basal shearing of twinned stacking faults and its effect on mechanical properties in an Mg–Zn–Y alloy with LPSO phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 779, 139109.	5.6	24
14	Exploring the strength and ductility improvement of Cu–Al alloys. Materials Science & Company (2020, 786, 139441.	5.6	19
15	Heterogeneous microstructure and voids dependence of tensile deformation in a selective laser melted AlSi10Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140109.	5.6	60
16	Modulating the prestrain history to optimize strength and ductility in CoCrFeMnNi high-entropy alloy. Scripta Materialia, 2019, 163, 111-115.	5.2	56
17	Enhanced bending fatigue resistance of a 50CrMnMoVNb spring steel with decarburized layer by surface spinning strengthening. International Journal of Fatigue, 2019, 124, 277-287.	5.7	21
18	Segregation of solute atoms along deformation-induced boundaries in an Mg–Zn–Y alloy containing long period stacking ordered phase. Materialia, 2019, 6, 100287.	2.7	10

#	Article	IF	CITATIONS
19	Enhanced tensile and bending yield strengths of 304 stainless steel and H62 brass by surface spinning strengthening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 593-601.	5.6	29
20	Declined Fatigue Crack Propagation Rate of a Highâ€Strength Steel by Electropulsing Treatment. Advanced Engineering Materials, 2019, 21, 1801345.	3.5	11
21	Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy. Journal of Materials Science and Technology, 2019, 35, 917-925.	10.7	105
22	Achieving high ductility in the 1.7†GPa grade CoCrFeMnNi high-entropy alloy at 77†K. Materials Science & Samp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 740-741, 336-341.	5.6	81
23	Significant Enhancement in Cryogenic Mechanical Properties of Cu–Al Alloy via Minor Recrystallization. Advanced Engineering Materials, 2019, 21, 1800889.	3.5	4
24	Rapid hardening of AISI 4340 steel induced by electropulsing treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 28-32.	5.6	27
25	Recovery of tensile properties of twinning-induced plasticity steel via electropulsing induced void healing. Scripta Materialia, 2018, 147, 88-92.	5.2	57
26	Hardening and softening mechanisms in a nano-lamellar austenitic steel induced by electropulsing treatment. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2018, 713, 146-150.	5.6	38
27	Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 603-607.	5.6	211
28	Synchronously improved fatigue strength and fatigue crack growth resistance in twinning-induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 533-542.	5.6	18
29	Surface strengthening behaviors of pure Cu with heterogeneous microstructures. Materials Science & Science	5.6	17
30	Enhanced efficiency of self-healing of Cr2AlC. Materials Letters, 2018, 227, 51-54.	2.6	10
31	Optimizing the fatigue strength of 18Ni maraging steel through ageing treatment. Materials Science & Samp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 674-688.	5.6	42
32	Nano-scale precipitates: The key to high strength and high conductivity in Al alloy wire. Materials and Design, 2017, 132, 148-157.	7.0	66
33	High-cycle fatigue properties and damage mechanisms of pre-strained Fe-30Mn-0.9C twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 679, 258-271.	5.6	45
34	Fatigue and Fracture Behavior of a Cold-Drawn Commercially Pure Aluminum Wire. Materials, 2016, 9, 764.	2.9	9
35	Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 35-38.	5.6	75
36	Improving the High-Cycle Fatigue Lives of Fe-30Mn-0.9C Twinning-Induced Plasticity Steel Through Pre-straining. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3317-3323.	2.2	31

#	Article	IF	Citations
37	Microstructure evolution and strengthening mechanisms of cold-drawn commercially pure aluminum wire. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 103-106.	5.6	64
38	In situ bending of layered compounds: The role of anisotropy in Ti2AlC microcantilevers. Scripta Materialia, 2014, 89, 21-24.	5.2	7
39	Oxide-scale growth on Cr2AlC ceramic and its consequence for self-healing. Scripta Materialia, 2013, 69, 203-206.	5.2	64
40	Healing performance of Ti2AlC ceramic studied with in situ microcantilever bending. Journal of the European Ceramic Society, 2013, 33, 383-391.	5.7	34
41	Microstructural Characterization of Long-Period Stacking Ordered Phases in Mg ₉₇ Zn ₁ Y ₂ (at.%) Alloy. Microscopy and Microanalysis, 2013, 19, 1575-1580.	0.4	18
42	Self-healing performance of Ti2AlC ceramic. Journal of Materials Chemistry, 2012, 22, 8304.	6.7	77
43	High temperature healing of Ti2AlC: On the origin of inhomogeneous oxide scale. Scripta Materialia, 2011, 65, 135-138.	5.2	85
44	Comments on "microstructural evolution during high-temperature oxidation of Ti2AlC ceramics― Scripta Materialia, 2011, 65, 930-932.	5.2	10
45	Coarsening mechanisms, texture evolution and size distribution of Cu6Sn5 between Cu and Sn-based solders. Materials Chemistry and Physics, 2011, 131, 190-198.	4.0	20
46	TEM study of the initial oxide scales of Ti2AlC. Acta Materialia, 2011, 59, 5216-5223.	7.9	52
47	Enhancing strength and ductility of Mg–12Gd–3Y–0.5Zr alloy by forming a bi-ultrafine microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4300-4311.	5.6	30
48	Effects of Route on Microstructural Evolution and Mechanical Properties of Cu-8ÂWtÂPct Ag Alloy Processed by Equal Channel Angular Pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2290-2303.	2.2	23
49	Shear banding observations in Cu–16wt.% Ag alloy subjected to one-pass equal channel angular pressing. Scripta Materialia, 2010, 62, 183-186.	5.2	23
50	Enhancing Strength and Maintaining Ductility of Mg-3%Li-1%Sc Alloy by Equal Channel Angular Pressing. Materials Science Forum, 2010, 667-669, 839-844.	0.3	1
51	Analysis and characterization by electron backscatter diffraction of microstructural evolution in the adiabatic shear bands in Fe–Cr–Ni alloys. Journal of Materials Research, 2009, 24, 2617-2627.	2.6	13
52	Preferential growth and orientation relationship of Ag ₃ Sn grains formed between molten Sn and (001) Ag single crystal. Journal of Materials Research, 2009, 24, 2141-2144.	2.6	17
53	Evolution of initial grain boundaries and shear bands in Cu bicrystals during one-pass equal-channel angular pressing. Acta Materialia, 2009, 57, 1132-1146.	7.9	31
54	Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Materialia, 2009, 57, 1586-1601.	7.9	328

#	Article	IF	CITATIONS
55	EBSD Study on Deformation Twinning in AZ31 Magnesium Alloy During Quasiâ€inâ€6itu Compression. Advanced Engineering Materials, 2008, 10, 955-960.	3.5	59
56	Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals. Acta Materialia, 2008, 56, 2649-2662.	7.9	181
57	Dynamic recrystallization in the shear bands of Fe–Cr–Ni monocrystal: Electron backscatter diffraction characterization. Scripta Materialia, 2008, 58, 691-694.	5.2	32
58	Cyclic deformation behavior of as-extruded Mg–3%Al–1%Zn. Scripta Materialia, 2008, 58, 751-754.	5.2	150
59	Tailoring Microstructures and Mechanical Properties of AlCoCrFeNiTi0.3 High-Entropy Alloys by Heat Treatment. Materials Science Forum, 0, 745-746, 768-774.	0.3	4
60	Effect of Aging State on Fatigue Property of Wrought Aluminum Alloys. SSRN Electronic Journal, 0, , .	0.4	0
61	Regulating the tensile properties of a nano″amellar austenitic stainless steel via cryogenic electropulsing. Advanced Engineering Materials, 0, , .	3.5	2