Minda Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7124590/publications.pdf

Version: 2024-02-01

687363 580821 25 29 630 13 h-index citations g-index papers 30 30 30 893 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In Situ Formed Pt ₃ Ti Nanoparticles on a Two-Dimensional Transition Metal Carbide (MXene) Used as Efficient Catalysts for Hydrogen Evolution Reactions. Nano Letters, 2019, 19, 5102-5108.	9.1	133
2	Encapsulation of Nonprecious Metal into Ordered Mesoporous N-Doped Carbon for Efficient Quinoline Transfer Hydrogenation with Formic Acid. ACS Catalysis, 2018, 8, 8396-8405.	11.2	93
3	Toward Phase and Catalysis Control: Tracking the Formation of Intermetallic Nanoparticles at Atomic Scale. CheM, 2019, 5, 1235-1247.	11.7	45
4	Thermal Unequilibrium of PdSn Intermetallic Nanocatalysts: From In Situ Tailored Synthesis to Unexpected Hydrogenation Selectivity. Angewandte Chemie - International Edition, 2021, 60, 18309-18317.	13.8	32
5	Single Molecule Investigation of Nanoconfinement Hydrophobicity in Heterogeneous Catalysis. Journal of the American Chemical Society, 2020, 142, 13305-13309.	13.7	31
6	Catalytic properties of intermetallic platinum-tin nanoparticles with non-stoichiometric compositions. Journal of Catalysis, 2019, 374, 136-142.	6.2	29
7	Intermetallic Nanocatalyst for Highly Active Heterogeneous Hydroformylation. Journal of the American Chemical Society, 2021, 143, 20907-20915.	13.7	28
8	Kinetics, energetics, and size dependence of the transformation from Pt to ordered PtSn intermetallic nanoparticles. Nanoscale, 2019, 11, 5336-5345.	5 . 6	25
9	Allylic oxidation of olefins with a manganese-based metal–organic framework. Green Chemistry, 2019, 21, 3629-3636.	9.0	22
10	Aerobic oxidation of the C–H bond under ambient conditions using highly dispersed Co over highly porous N-doped carbon. Green Chemistry, 2019, 21, 1461-1466.	9.0	20
11	Influence of Sn on Stability and Selectivity of Pt–Sn@UiO-66-NH ₂ in Furfural Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 17495-17501.	3.7	16
12	Room-Temperature Tandem Condensation-Hydrogenation Catalyzed by Porous C3N4 Nanosheet-Supported Pd Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 3356-3363.	6.7	15
13	Subâ€5 nm Intermetallic Nanoparticles Confined in Mesoporous Silica Wells for Selective Hydrogenation of Acetylene to Ethylene. ChemCatChem, 2020, 12, 3022-3029.	3.7	14
14	Cyclopropane Hydrogenation vs Isomerization over Pt and Pt–Sn Intermetallic Nanoparticle Catalysts: A Parahydrogen Spin-Labeling Study. Journal of Physical Chemistry C, 2020, 124, 8304-8309.	3.1	14
15	A Pd(II)â€Functionalized Covalent Organic Framework for Catalytic Conjugate Additions of Arylboronic Acids to β,βâ€Disubstituted Enones. ChemCatChem, 2019, 11, 4286-4290.	3.7	13
16	An inexpensive apparatus for up to 97% continuous-flow parahydrogen enrichment using liquid helium. Journal of Magnetic Resonance, 2020, 321, 106869.	2.1	13
17	General Synthetic Strategy to Ordered Mesoporous Carbon Catalysts with Singleâ€Atom Metal Sites for Electrochemical CO ₂ Reduction. Small, 2022, 18, e2107799.	10.0	13
18	Microtribological behavior of Mo and W nanoparticle/graphene composites. Wear, 2018, 414-415, 310-316.	3.1	12

#	Article	IF	CITATIONS
19	Tandem Condensationâ€Hydrogenation to Produce Alkylated Nitriles Using Bifunctional Catalysts: Platinum Nanoparticles Supported on MOFâ€Derived Carbon. ChemCatChem, 2020, 12, 602-608.	3.7	12
20	Pairwise semi-hydrogenation of alkyne to <i>cis</i> -alkene on platinum-tin intermetallic compounds. Nanoscale, 2020, 12, 8519-8524.	5.6	12
21	Reshaping of Truncated Pd Nanocubes: Energetic and Kinetic Analysis Integrating Transmission Electron Microscopy with Atomistic-Level and Coarse-Grained Modeling. ACS Nano, 2020, 14, 8551-8561.	14.6	9
22	Silica-Encapsulated Intermetallic Nanoparticles for Highly Active and Selective Heterogeneous Catalysis. Accounts of Materials Research, 2021, 2, 1190-1202.	11.7	8
23	Thermal Unequilibrium of PdSn Intermetallic Nanocatalysts: From In Situ Tailored Synthesis to Unexpected Hydrogenation Selectivity. Angewandte Chemie, 2021, 133, 18457-18465.	2.0	7
24	Mesoporous Silica Encapsulated Platinum–Tin Intermetallic Nanoparticles Catalyze Hydrogenation with an Unprecedented 20% Pairwise Selectivity for Parahydrogen Enhanced Nuclear Magnetic Resonance. Journal of Physical Chemistry Letters, 2022, 13, 4125-4132.	4.6	4
25	Tandem Synthesis of ϵâ€Caprolactam from Cyclohexanone by an Acidified Metalâ€organic Framework. ChemCatChem, 2021, 13, 3084-3089.	3.7	3
26	General Synthetic Strategy to Ordered Mesoporous Carbon Catalysts with Singleâ€Atom Metal Sites for Electrochemical CO ₂ Reduction (Small 16/2022). Small, 2022, 18, .	10.0	3
27	Shape Stability of Truncated Octahedral fcc Metal Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51954-51961.	8.0	2
28	Structure evolution of single-site Pt in a metal–organic framework. Journal of Chemical Physics, 2021, 154, 094710.	3.0	1
29	Tandem synthesis of tetrahydroquinolines and identification of the reaction network by <i>operando</i> NMR. Catalysis Science and Technology, 2021, 11, 4332-4341.	4.1	1