
Alexandre Magasinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7123354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Applied Materials & Interfaces, 2010, 2, 3004-3010.	8.0	901
2	Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy and Environmental Science, 2013, 6, 2465.	30.8	309
3	Nanosiliconâ€Coated Graphene Granules as Anodes for Liâ€lon Batteries. Advanced Energy Materials, 2011, 1, 495-498.	19.5	241
4	Harnessing Steric Separation of Freshly Nucleated Li ₂ S Nanoparticles for Bottomâ€Up Assembly of Highâ€Performance Cathodes for Lithiumâ€Sulfur and Lithiumâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1400196.	19.5	135
5	Hierarchical Fabric Decorated with Carbon Nanowire/Metal Oxide Nanocomposites for 1.6 V Wearable Aqueous Supercapacitors. Advanced Energy Materials, 2018, 8, 1703454.	19.5	135
6	Plasmaâ€Enhanced Atomic Layer Deposition of Ultrathin Oxide Coatings for Stabilized Lithium–Sulfur Batteries. Advanced Energy Materials, 2013, 3, 1308-1315.	19.5	133
7	Nanoporous Li ₂ S and MWCNT-linked Li ₂ S powder cathodes for lithium-sulfur and lithium-ion battery chemistries. Journal of Materials Chemistry A, 2014, 2, 6064-6070.	10.3	128
8	Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nature Materials, 2019, 18, 1343-1349.	27.5	127
9	Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nature Materials, 2021, 20, 984-990.	27.5	105
10	Solutionâ€Based Processing of Graphene–Li ₂ S Composite Cathodes for Lithiumâ€lon and Lithium–Sulfur Batteries. Particle and Particle Systems Characterization, 2014, 31, 639-644.	2.3	99
11	Iron Fluoride–Carbon Nanocomposite Nanofibers as Freeâ€Standing Cathodes for Highâ€Energy Lithium Batteries. Advanced Functional Materials, 2018, 28, 1801711.	14.9	97
12	In Situ TEM Observation of Electrochemical Lithiation of Sulfur Confined within Inner Cylindrical Pores of Carbon Nanotubes. Advanced Energy Materials, 2015, 5, 1501306.	19.5	93
13	Carbon Nanotube–CoF ₂ Multifunctional Cathode for Lithium Ion Batteries: Effect of Electrolyte on Cycle Stability. Small, 2015, 11, 5164-5173.	10.0	80
14	Degradation and stabilization of lithium cobalt oxide in aqueous electrolytes. Energy and Environmental Science, 2016, 9, 1841-1848.	30.8	80
15	Transformation of bulk alloys to oxide nanowires. Science, 2017, 355, 267-271.	12.6	76
16	Lithium–Iron Fluoride Battery with In Situ Surface Protection. Advanced Functional Materials, 2016, 26, 1507-1516.	14.9	73
17	Lithium–Iron (III) Fluoride Battery with Double Surface Protection. Advanced Energy Materials, 2018, 8, 1800721.	19.5	67
18	Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Materials Today, 2021, 48, 176-197.	14.2	66

1

#	Article	IF	CITATIONS
19	Protons Enhance Conductivities in Lithium Halide Hydroxide/Lithium Oxyhalide Solid Electrolytes by Forming Rotating Hydroxy Groups. Advanced Energy Materials, 2018, 8, 1700971.	19.5	65
20	Fading Mechanisms and Voltage Hysteresis in FeF ₂ –NiF ₂ Solid Solution Cathodes for Lithium and Lithiumâ€lon Batteries. Small, 2019, 15, e1804670.	10.0	62
21	Insights into the Effects of Electrolyte Composition on the Performance and Stability of FeF ₂ Conversionâ€Type Cathodes. Advanced Energy Materials, 2019, 9, 1803323.	19.5	56
22	Anatase TiO ₂ Confined in Carbon Nanopores for Highâ€Energy Liâ€Ion Hybrid Supercapacitors Operating at High Rates and Subzero Temperatures. Advanced Energy Materials, 2020, 10, 1902993.	19.5	39
23	Enhancing Cycle Stability of Lithium Iron Phosphate in Aqueous Electrolytes by Increasing Electrolyte Molarity. Advanced Energy Materials, 2016, 6, 1501805.	19.5	37
24	Iron Phosphate Coated Flexible Carbon Nanotube Fabric as a Multifunctional Cathode for Naâ€lon Batteries. Small, 2018, 14, e1703425.	10.0	33
25	Mixed Metal Difluorides as High Capacity Conversionâ€Type Cathodes: Impact of Composition on Stability and Performance. Advanced Energy Materials, 2018, 8, 1800213.	19.5	29
26	A nanoconfined iron(<scp>iii</scp>) fluoride cathode in a NaDFOB electrolyte: towards high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 4091-4098.	10.3	28
27	Iron Phosphide Confined in Carbon Nanofibers as a Free-Standing Flexible Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34074-34083.	8.0	24
28	A Naphthalene Diimide Covalent Organic Framework: Comparison of Cathode Performance in Lithium-Ion Batteries with Amorphous Cross-linked and Linear Analogues, and Its Use in Aqueous Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 350-356.	5.1	20
29	High-Temperature Oxidation of Single Carbon Nanoparticles: Dependence on the Surface Structure and Probing Real-Time Structural Evolution via Kinetics. Journal of the American Chemical Society, 2022, 144, 4897-4912.	13.7	5
30	Stability of FeF ₃ -Based Sodium-Ion Batteries in Nonflammable Ionic Liquid Electrolytes at Room and Elevated Temperatures. ACS Applied Materials & Interfaces, 2022, 14, 33447-33456.	8.0	5
31	Nanostructured composites for high energy batteries and supercapacitors. , 2015, , .		2
32	Ion Conductivities: Protons Enhance Conductivities in Lithium Halide Hydroxide/Lithium Oxyhalide Solid Electrolytes by Forming Rotating Hydroxy Groups (Adv. Energy Mater. 3/2018). Advanced Energy Materials, 2018, 8, 1870014.	19.5	2
33	Conversion Cathodes: Lithium–Iron Fluoride Battery with In Situ Surface Protection (Adv. Funct.) Tj ETQq1 1 0.	784314 rg 14.9	gBT /Overloci

Lithium Titanate Confined in Nanoporous Copper for High-Rate Battery Applications. MRS Advances, 0.9 2018, 3, 1249-1253.