Wen-Yang Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7123206/publications.pdf

Version: 2024-02-01

64 4,703 33 67
papers citations h-index g-index

71 71 71 5687

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	A porous supramolecular ionic solid. Chemical Communications, 2021, 57, 7248-7251.	4.1	5
2	Leveraging Exchange Kinetics for the Synthesis of Atomically Precise Porous Catalysts. ChemCatChem, 2021, 13, 2117-2131.	3.7	6
3	Mechanochemistry of Group 4 Element-Based Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 16079-16084.	4.0	9
4	Synthesis of atomically precise single-crystalline Ru ₂ -based coordination polymers. Dalton Transactions, 2020, 49, 16077-16081.	3.3	3
5	A Mixedâ€Metal Porphyrinic Framework Promoting Gasâ€Phase CO ₂ Photoreduction without Organic Sacrificial Agents. ChemSusChem, 2020, 13, 6273-6277.	6.8	26
6	Atomically Precise Crystalline Materials Based on Kinetically Inert Metal Ions via Reticular Mechanopolymerization. Angewandte Chemie - International Edition, 2020, 59, 10878-10883.	13.8	13
7	Atomically Precise Crystalline Materials Based on Kinetically Inert Metal Ions via Reticular Mechanopolymerization. Angewandte Chemie, 2020, 132, 10970-10975.	2.0	3
8	Templating metastable Pd2 carboxylate aggregates. Chemical Science, 2019, 10, 1823-1830.	7.4	15
9	lodosylbenzene Coordination Chemistry Relevant to Metal–Organic Framework Catalysis. Inorganic Chemistry, 2019, 58, 10543-10553.	4.0	14
10	Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts. Organometallics, 2019, 38, 3436-3443.	2.3	9
11	Measuring and Modulating Substrate Confinement during Nitrogen-Atom Transfer in a Ru ₂ -Based Metal-Organic Framework. Journal of the American Chemical Society, 2019, 141, 19203-19207.	13.7	21
12	In Operando Analysis of Diffusion in Porous Metalâ€Organic Framework Catalysts. Chemistry - A European Journal, 2019, 25, 3465-3476.	3.3	42
13	A Stable Metal–Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angewandte Chemie - International Edition, 2018, 57, 4657-4662.	13.8	283
14	A Stable Metal–Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angewandte Chemie, 2018, 130, 4747-4752.	2.0	32
15	Probing Substrate Diffusion in Interstitial MOF Chemistry with Kinetic Isotope Effects. Angewandte Chemie, 2018, 130, 3738-3743.	2.0	12
16	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie - International Edition, 2018, 57, 5684-5689.	13.8	161
17	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie, 2018, 130, 5786-5791.	2.0	27
18	Probing Substrate Diffusion in Interstitial MOF Chemistry with Kinetic Isotope Effects. Angewandte Chemie - International Edition, 2018, 57, 3676-3681.	13.8	34

#	Article	IF	Citations
19	A metal–metalloporphyrin framework based on an octatopic porphyrin ligand for chemical fixation of CO ₂ with aziridines. Chemical Communications, 2018, 54, 1170-1173.	4.1	104
20	Visualizing Structural Transformation and Guest Binding in a Flexible Metal–Organic Framework under High Pressure and Room Temperature. ACS Central Science, 2018, 4, 1194-1200.	11.3	46
21	Large Thermal Motion in Halide Perovskites. Scientific Reports, 2017, 7, 9401.	3.3	23
22	Anionic Metal–Organic Framework for Selective Dye Removal and CO ₂ Fixation. European Journal of Inorganic Chemistry, 2016, 2016, 4373-4377.	2.0	66
23	Inserting CO ₂ into Aryl Câ^'H Bonds of Metalâ€"Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ^'H Activation. Angewandte Chemie - International Edition, 2016, 55, 5472-5476.	13.8	129
24	Investigation of a microporous iron(<scp>iii</scp>) porphyrin framework derived cathode catalyst in PEM fuel cells. Journal of Materials Chemistry A, 2016, 4, 15621-15630.	10.3	15
25	Two highly porous single-crystalline zirconium-based metal-organic frameworks. Science China Chemistry, 2016, 59, 980-983.	8.2	14
26	Imparting amphiphobicity on single-crystalline porous materials. Nature Communications, 2016, 7, 13300.	12.8	126
27	Advanced Photoemission Spectroscopy Investigations Correlated with DFT Calculations on the Self-Assembly of 2D Metal Organic Frameworks Nano Thin Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31403-31412.	8.0	17
28	Inserting CO ₂ into Aryl Câ^'H Bonds of Metalâ€"Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ^'H Activation. Angewandte Chemie, 2016, 128, 5562-5566.	2.0	41
29	Interpenetrating Metal–Metalloporphyrin Framework for Selective CO ₂ Uptake and Chemical Transformation of CO ₂ . Inorganic Chemistry, 2016, 55, 7291-7294.	4.0	115
30	A lanthanide metal-organic framework based on a custom-designed macrocyclic ligand. Journal of Coordination Chemistry, 2016, 69, 1844-1851.	2.2	6
31	Imparting BrÃ,nsted acidity into a zeolitic imidazole framework. Inorganic Chemistry Frontiers, 2016, 3, 393-396.	6.0	19
32	A Robust Metal-Metalloporphyrin Framework Based upon a Secondary Building Unit of Infinite Nickel Oxide Chain. Crystal Growth and Design, 2016, 16, 1005-1009.	3.0	14
33	An effective strategy to boost the robustness of metal–organic frameworks via introduction of size-matching ligand braces. Chemical Communications, 2016, 52, 1971-1974.	4.1	33
34	Titelbild: Precise Molecular Fission and Fusion: Quantitative Self-Assembly and Chemistry of a Metallo-Cuboctahedron (Angew. Chem. 32/2015). Angewandte Chemie, 2015, 127, 9259-9259.	2.0	0
35	Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in <i>rht</i> å€Metal–Organic Frameworks. ChemPhysChem, 2015, 16, 3170-3179.	2.1	14
36	Precise Molecular Fission and Fusion: Quantitative Selfâ€Assembly and Chemistry of a Metalloâ€Cuboctahedron. Angewandte Chemie - International Edition, 2015, 54, 9224-9229.	13.8	93

#	Article	IF	CITATIONS
37	Investigation of prototypal MOFs consisting of polyhedral cages with accessible Lewis-acid sites for quinoline synthesis. Chemical Communications, 2015, 51, 4827-4829.	4.1	33
38	Open metal sites dangled on cobalt trigonal prismatic clusters within porous MOF for CO ₂ capture. Inorganic Chemistry Frontiers, 2015, 2, 369-372.	6.0	23
39	A new photoactive Ru(<scp>ii</scp>)tris(2,2′-bipyridine) templated Zn(<scp>ii</scp>) benzene-1,4-dicarboxylate metal organic framework: structure and photophysical properties. Dalton Transactions, 2015, 44, 5331-5337.	3.3	25
40	Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 2144-2151.	6.7	72
41	A new family of anionic organic–inorganic hybrid doughnut-like nanostructures. Chemical Communications, 2015, 51, 9223-9226.	4.1	40
42	The local electric field favours more than exposed nitrogen atoms on CO ₂ capture: a case study on the rht -type MOF platform. Chemical Communications, 2015, 51, 9636-9639.	4.1	48
43	Reducing CO2 to dense nanoporous graphene by Mg/Zn for high power electrochemical capacitors. Nano Energy, $2015, 11, 600-610$.	16.0	100
44	Sulfonoâ€Î³â€AApeptides as a New Class of Nonnatural Helical Foldamer. Chemistry - A European Journal, 2015, 21, 2501-2507.	3.3	30
45	The synthesis of head-to-tail cyclic sulfono-Î ³ -AApeptides. Organic and Biomolecular Chemistry, 2015, 13, 672-676.	2.8	12
46	Crystal Engineering of an nbo Topology Metal–Organic Framework for Chemical Fixation of CO ₂ under Ambient Conditions. Angewandte Chemie - International Edition, 2014, 53, 2615-2619.	13.8	505
47	Beyond Custom Design of Organic Ligands: An Integrative Strategy for Metal-Organic Frameworks Design. Comments on Inorganic Chemistry, 2014, 34, 125-141.	5.2	12
48	A porous metal–metalloporphyrin framework featuring high-density active sites for chemical fixation of CO ₂ under ambient conditions. Chemical Communications, 2014, 50, 5316-5318.	4.1	203
49	Metal–metalloporphyrin frameworks: a resurging class of functional materials. Chemical Society Reviews, 2014, 43, 5841-5866.	38.1	547
50	Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon, 2014, 76, 165-174.	10.3	279
51	Two homochiral organocatalytic metal organic materials with nanoscopic channels. Chemical Communications, 2013, 49, 7693.	4.1	54
52	The effect of surfactant-free TiO ₂ surface hydroxyl groups on physicochemical, optical and self-cleaning properties of developed coatings on polycarbonate. Journal Physics D: Applied Physics, 2013, 46, 505316.	2.8	13
53	Two rare indium-based porous metal–metalloporphyrin frameworks exhibiting interesting CO2 uptake. CrystEngComm, 2013, 15, 9320.	2.6	45
54	A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake. Chemical Communications, 2013, 49, 10269.	4.1	76

#	Article	IF	CITATION
55	Quest for a highly connected robust porous metal–organic framework on the basis of a bifunctional linear linker and a rare heptanuclear zinc cluster. Chemical Communications, 2013, 49, 10516.	4.1	35
56	Porous metal–organic framework based on a macrocyclic tetracarboxylate ligand exhibiting selective CO2 uptake. CrystEngComm, 2012, 14, 6115.	2.6	47
57	Postâ€Synthetic Modification of Porphyrinâ€Encapsulating Metal–Organic Materials by Cooperative Addition of Inorganic Salts to Enhance CO ₂ <i>/</i> CH ₄ Selectivity. Angewandte Chemie - International Edition, 2012, 51, 9330-9334.	13.8	106
58	Crystal Engineering of a Microporous, Catalytically Active fcu Topology MOF Using a Customâ€Designed Metalloporphyrin Linker. Angewandte Chemie - International Edition, 2012, 51, 10082-10085.	13.8	154
59	Porous Double-Walled Metal Triazolate Framework Based upon a Bifunctional Ligand and a Pentanuclear Zinc Cluster Exhibiting Selective CO ₂ Uptake. Inorganic Chemistry, 2012, 51, 4423-4425.	4.0	52
60	Quest for highly porous metal–metalloporphyrin framework based upon a custom-designed octatopic porphyrin ligand. Chemical Communications, 2012, 48, 7173.	4.1	92
61	Tunability of Band Gaps in Metal–Organic Frameworks. Inorganic Chemistry, 2012, 51, 9039-9044.	4.0	148
62	A pillared metal–organic framework incorporated with 1,2,3-triazole moieties exhibiting remarkable enhancement of CO2 uptake. Chemical Communications, 2012, 48, 8898.	4.1	77
63	Vertex-directed self-assembly of a high symmetry supermolecular building block using a custom-designed porphyrin. Chemical Science, 2012, 3, 2823.	7.4	92
64	The diverse structures of Cd(ii) coordination polymers with 1,3,5-benzenetribenzoate tuned by organic bases. CrystEngComm, 2011, 13, 5825.	2.6	27