
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7123122/publications.pdf Version: 2024-02-01

KEIII MORI

#	Article	IF	CITATIONS
1	Stronger BrÃ,nsted Acids: Recent Progress. Chemical Reviews, 2015, 115, 9277-9306.	47.7	570
2	Enantioselective Synthesis of Multisubstituted Biaryl Skeleton by Chiral Phosphoric Acid Catalyzed Desymmetrization/Kinetic Resolution Sequence. Journal of the American Chemical Society, 2013, 135, 3964-3970.	13.7	262
3	Selective Activation of Enantiotopic C(sp ³)â^'Hydrogen by Means of Chiral Phosphoric Acid: Asymmetric Synthesis of Tetrahydroquinoline Derivatives. Journal of the American Chemical Society, 2011, 133, 6166-6169.	13.7	243
4	Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution. Angewandte Chemie - International Edition, 2016, 55, 11642-11646.	13.8	167
5	Expeditious Construction of a Carbobicyclic Skeleton via sp ³ -Câ^'H Functionalization: Hydride Shift from an Aliphatic Tertiary Position in an Internal Redox Process. Journal of the American Chemical Society, 2011, 133, 2424-2426.	13.7	150
6	Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation: Facile Synthetic Access to Highly Optically Active Trifluoromethylated Amines. Angewandte Chemie - International Edition, 2011, 50, 8180-8183.	13.8	143
7	Enantioselective Aza-Darzens Reaction Catalyzed by A Chiral Phosphoric Acid. Organic Letters, 2009, 11, 2445-2447.	4.6	132
8	Expeditious Synthesis of Benzopyrans via Lewis Acid-Catalyzed Câ^'H Functionalization: Remarkable Enhancement of Reactivity by an <i>Ortho</i> Substituent. Organic Letters, 2010, 12, 1732-1735.	4.6	128
9	Double C(sp ³)–H Bond Functionalization Mediated by Sequential Hydride Shift/Cyclization Process: Diastereoselective Construction of Polyheterocycles. Journal of the American Chemical Society, 2014, 136, 3744-3747.	13.7	126
10	Chiral Phosphoric Acid Catalyzed Enantioselective Synthesis of β-Amino-α,α-difluoro Carbonyl Compounds. Organic Letters, 2011, 13, 1860-1863.	4.6	122
11	Enantioselective Robinsonâ€Type Annulation Reaction Catalyzed by Chiral Phosphoric Acids. Angewandte Chemie - International Edition, 2009, 48, 4226-4228.	13.8	114
12	Chiral Magnesium Bisphosphate-Catalyzed Asymmetric Double C(sp ³)–H Bond Functionalization Based on Sequential Hydride Shift/Cyclization Process. Journal of the American Chemical Society, 2018, 140, 6203-6207.	13.7	114
13	Chiral Phosphoric Acid Catalyzed Desymmetrization of <i>meso</i> â€1,3â€Diones: Asymmetric Synthesis of Chiral Cyclohexenones. Angewandte Chemie - International Edition, 2009, 48, 9652-9654.	13.8	112
14	Expeditious Construction of Quinazolines via BrÃ,nsted Acid-induced C–H Activation: Further Extension of " <i>tert</i> -Amino Effect― Chemistry Letters, 2009, 38, 524-525.	1.3	112
15	Stereochemical Relay via Axially Chiral Styrenes: Asymmetric Synthesis of the Antibiotic TANâ€1085. Angewandte Chemie - International Edition, 2009, 48, 5633-5637.	13.8	86
16	Concise Total Synthesis and Structure Assignment of TAN-1085. Angewandte Chemie - International Edition, 2004, 43, 3167-3171.	13.8	78
17	Concise Route to 3-Arylisoquinoline Skeleton by Lewis Acid Catalyzed C(sp3)–H Bond Functionalization and Its Application to Formal Synthesis of (±)-Tetrahydropalmatine. Organic Letters, 2012, 14, 1436-1439.	4.6	77
18	Expedient Synthesis of Nâ€Fused Indoles: A CF Activation and CH Insertion Approach. Angewandte Chemie - International Edition, 2009, 48, 8070-8073.	13.8	74

#	Article	IF	CITATIONS
19	Stereoselective construction of all-carbon quaternary center by means of chiral phosphoric acid: highly enantioselective Friedel–Crafts reaction of indoles with β,β-disubstituted nitroalkenes. Chemical Science, 2014, 5, 1799-1803.	7.4	74
20	Hydrogenâ€Bond Control in Axially Chiral Styrenes: Selective Synthesis of Enantiomerically Pure <i>C</i> ₂ ‣ymmetric Paracyclophanes. Angewandte Chemie - International Edition, 2009, 48, 5638-5641.	13.8	71
21	Chiral Phosphoric Acid Catalyzed Enantioselective Transfer Deuteration of Ketimines by Use of Benzothiazoline As a Deuterium Donor: Synthesis of Optically Active Deuterated Amines. Organic Letters, 2012, 14, 3312-3315.	4.6	71
22	Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution. Angewandte Chemie, 2016, 128, 11814-11818.	2.0	71
23	Chiral BrÃ,nsted acid-catalyzed hydrophosphonylation of imines—DFT study on the effect of substituents of phosphoric acid. Tetrahedron, 2009, 65, 4950-4956.	1.9	69
24	Chiral BrÃ,nsted acid catalyzed asymmetric Friedel–Crafts alkylation reaction of indoles with α,β-unsaturated ketones: short access to optically active 2- and 3-substituted indole derivatives. Organic and Biomolecular Chemistry, 2010, 8, 5448.	2.8	69
25	Enantioselective Friedel–Crafts Alkylation of Indoles, Pyrroles, and Furans with Trifluoropyruvate Catalyzed by Chiral Phosphoric Acid. Chemistry - an Asian Journal, 2010, 5, 470-472.	3.3	62
26	Rapid Access to 3-Aryltetralin Skeleton via C(sp3)–H Bond Functionalization: Investigation on the Substituent Effect of Aromatic Ring Adjacent to C–H Bond in Hydride Shift/Cyclization Sequence. Chemistry Letters, 2011, 40, 1386-1388.	1.3	51
27	Synthesis of 3â€Arylâ€1â€trifluoromethyltetrahydroisoquinolines by BrÃ,nsted Acidâ€Catalyzed C(<i>sp</i> ³)ï£;H Bond Functionalization. Advanced Synthesis and Catalysis, 2015, 357, 901-906.	4.3	51
28	Expeditious synthesis of 1-aminoindane derivatives achieved by [1,4]-hydride shift mediated C(sp3)–H bond functionalization. Chemical Communications, 2014, 50, 3729.	4.1	49
29	Highly Diastereoselective Synthesis of Medium-Sized Carbocycle-Fused Piperidines via Sequential Hydride Shift Triggered Double C(sp ³)–H Bond Functionalization. Organic Letters, 2019, 21, 9334-9338.	4.6	49
30	Highly diastereoselective synthesis of tricyclic fused-pyrans by sequential hydride shift mediated double C(sp ³)–H bond functionalization. Chemical Science, 2018, 9, 7327-7331.	7.4	47
31	Prediction of suitable catalyst by 1H NMR: asymmetric synthesis of multisubstituted biaryls by chiral phosphoric acid catalyzed asymmetric bromination. Chemical Science, 2013, 4, 4235.	7.4	45
32	Construction of seven- and eight-membered carbocycles by Lewis acid catalyzed C(sp ³)–H bond functionalization. Chemical Communications, 2019, 55, 13856-13859.	4.1	42
33	Divergent synthesis of CF ₃ -substituted polycyclic skeletons based on control of activation site of acid catalysts. Chemical Communications, 2018, 54, 6927-6930.	4.1	36
34	Kinetic Resolution in Chiral Phosphoric Acid Catalyzed Aldol Reactions: Enantioselective Robinsonâ€Type Annulation Reactions. European Journal of Organic Chemistry, 2012, 2012, 4508-4514.	2.4	35
35	Hf(OTf) ₄ -Catalyzed highly diastereoselective synthesis of 1,3-disubstituted tetralin derivatives via benzylic C(sp ³)–H bond functionalization. Chemical Communications, 2017, 53, 4319-4322.	4.1	34
36	The Discovery of Fungal Polyene Macrolides via a Postgenomic Approach Reveals a Polyketide Macrocyclization by trans-Acting Thioesterase in Fungi. Organic Letters, 2019, 21, 4788-4792.	4.6	33

#	Article	IF	CITATIONS
37	Diastereoselective Synthesis of CF ₃ -Substituted Spiroisochromans by [1,5]-Hydride Shift/Cyclization/Intramolecular Friedel–Crafts Reaction Sequence. Organic Letters, 2019, 21, 2383-2387.	4.6	33
38	Expeditious synthesis of multisubstituted indoles <i>via</i> multiple hydrogen transfers. Chemical Communications, 2018, 54, 12686-12689.	4.1	32
39	Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Phosphoric Acid Bearing an (<i>S</i>)-Biphenol Backbone. Synlett, 2009, 2009, 1664-1666.	1.8	27
40	Hydrodefluorinations of trifluorotoluenes by LiAlH4 and TiCl4. Journal of Fluorine Chemistry, 2013, 152, 81-83.	1.7	25
41	Expeditious Synthesis of Multisubstituted Quinolinone Derivatives Based on Ring Recombination Strategy. Organic Letters, 2020, 22, 244-248.	4.6	25
42	Highly Stereoselective Synthesis of Fused Tetrahydropyrans via Lewis-Acid-Promoted Double C(sp ³)–H Bond Functionalization. Organic Letters, 2020, 22, 5801-5805.	4.6	25
43	Enantioselective Fluorination of β-Ketoesters Catalyzed by Chiral Sodium Phosphate: Remarkable Enhancement of Reactivity by Simultaneous Utilization of Metal Enolate and Metal Phosphate. Chemistry Letters, 2014, 43, 137-139.	1.3	23
44	Enantioselective Transfer Hydrogenation of Difluoromethyl Ketimines Using Benzothiazoline as a Hydrogen Donor in Combination with a Chiral Phosphoric Acid. Asian Journal of Organic Chemistry, 2013, 2, 943-946.	2.7	22
45	Divergent Access to Seven/Five-Membered Rings Based on [1,6]-Hydride Shift/Cyclization Process. Organic Letters, 2021, 23, 9403-9407.	4.6	20
46	Synthesis and Stereochemical Assignment of Angucycline Antibiotic, PD-116740. Chemistry Letters, 2008, 37, 470-471.	1.3	19
47	Niobium-catalyzed Activation of CF3 Group on Alkene: Synthesis of Substituted Indenes. Chemistry Letters, 2010, 39, 867-869.	1.3	19
48	Enantioselective Synthesis of Chiral Biaryl Chlorides/Iodides by a Chiral Phosphoric Acid Catalyzed Sequential Halogenation Strategy. Advanced Synthesis and Catalysis, 2015, 357, 35-40.	4.3	18
49	Highly Diastereoselective Synthesis of Tetralin-fused Spirooxindoles via Lewis Acid-catalyzed C(sp ³)–H Bond Functionalization. Chemistry Letters, 2018, 47, 868-871.	1.3	17
50	Construction of 1,3-Dithio-Substituted Tetralins by [1,5]-Alkylthio Group Transfer Mediated Skeletal Rearrangement. Organic Letters, 2018, 20, 4223-4226.	4.6	17
51	C(sp3)–H Bond Functionalization Mediated by Hydride a Shift/Cyclization System. Bulletin of the Chemical Society of Japan, 2022, 95, 296-305.	3.2	17
52	Enantioselective synthesis of fused heterocycles with contiguous stereogenic centers by chiral phosphoric acid catalyzed symmetry breaking. Chemical Communications, 2015, 51, 16107-16110.	4.1	16
53	Genome Mining-Based Discovery of Fungal Macrolides Modified by glycosylphosphatidylinositol (GPI)–Ethanolamine Phosphate Transferase Homologues. Organic Letters, 2020, 22, 5876-5879.	4.6	16
54	Dual Functionalization of Allene: Facile Construction of Heteropolycycles Mediated by BrÃ,nsted Acid. Chemistry Letters, 2009, 38, 628-629.	1.3	14

#	Article	IF	CITATIONS
55	Synthesis of Seven-membered Ring Containing Difluoromethylene Unit by Sc(OTf) ₃ -catalyzed Activation of Single C–F Bond in CF ₃ Group. Chemistry Letters, 2019, 48, 771-774.	1.3	10
56	Rapid access to 3-indolyl-1-trifluoromethyl-isobenzofurans by hybrid use of Lewis/BrÃ,nsted acid catalysts. Organic and Biomolecular Chemistry, 2020, 18, 6602-6606.	2.8	9
57	Stereoselective synthesis of highly congested tetralin-fused spirooxindoles with hydroxy group: Pseudo oxygen atom induced hydride shift/cyclization process. Tetrahedron Letters, 2021, 83, 153408.	1.4	6
58	Highly Efficient Kinetic Resolution of PHANOL by Chiral Phosphoric Acid Catalyzed Asymmetric Acylation. Synthesis, 2016, 49, 365-370.	2.3	4
59	Recent Advances in Cross-Coupling Reaction Catalyzed by Iron Salts. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 75-76.	0.1	4
60	Facile Synthesis of π-Conjugated Heteroaromatic Compounds via Weak-Base-Promoted Transition-Metal-Free C–N Coupling. Synthesis, 2020, 52, 1096-1102.	2.3	3
61	Synthesis of <i>C</i> 3-Symmetric Macrocyclic Triimines from Monomers Having Boc-protected Amine and Formyl Group. Chemistry Letters, 2022, 51, 217-220.	1.3	3
62	Diastereoselective Synthesis of Multisubstituted Chroman Derivatives via Iminium Formation/Morita-Baylis-Hillman Reaction/ <i>Oxa</i> -Michael Reaction Sequence. Chemistry Letters, 2019, 48, 337-340.	1.3	1
63	Access to <i>ortho</i> -Hydroxyphenyl Ketimines via Imine Anion-Mediated Smiles Rearrangement. Organic Letters, 2022, 24, 4140-4144.	4.6	1
64	Titelbild: Expedient Synthesis of N-Fused Indoles: A CF Activation and CH Insertion Approach (Angew. Chem. 43/2009). Angewandte Chemie, 2009, 121, 8083-8083.	2.0	0
65	Cover Picture: Expedient Synthesis of N-Fused Indoles: A Cĩ£¿F Activation and Cĩ£¿H Insertion Approach (Angew. Chem. Int. Ed. 43/2009). Angewandte Chemie - International Edition, 2009, 48, 7941-7941.	13.8	Ο
66	Catalytic Magnesium-Oppenauer Oxidation of Alcohols. Chemistry Letters, 2022, 51, 481-484.	1.3	0