Julien Guthmuller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7122471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lightâ€Driven Multiâ€Charge Separation in a Pushâ€Pull Rutheniumâ€Based Photosensitizer – Assessed by RASSCF and TDDFT Simulations. ChemPhotoChem, 2022, 6, .	3.0	4
2	Sum-over-state expressions including second-order Herzberg–Teller effects for the calculation of absorption and resonance Raman intensities. Journal of Chemical Physics, 2021, 155, 084107.	3.0	2
3	Radiative lifetime of a BODIPY dye as calculated by TDDFT and EOM-CCSD methods: solvent and vibronic effects. Physical Chemistry Chemical Physics, 2021, 23, 26324-26335.	2.8	11
4	Synthesis and hydrogen evolving catalysis of a panchromatic photochemical molecular device. Sustainable Energy and Fuels, 2020, 4, 619-624.	4.9	9
5	Effects of Bromine Doping on the Structural Properties and Band Gap of CH ₃ NH ₃ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ Perovskite. ACS Omega, 2020, 5, 26946-26953.	3.5	15
6	Influence of Orientational Disorder on the Optical Absorption Properties of the Hybrid Metalâ€Halide Perovskite CH ₃ NH ₃ PbI ₃ . ChemPhysChem, 2019, 20, 3228-3237.	2.1	2
7	Effect of the Catalytic Center on the Electron Transfer Dynamics in Hydrogen-Evolving Ruthenium-Based Photocatalysts Investigated by Theoretical Calculations. Journal of Physical Chemistry C, 2019, 123, 16003-16013.	3.1	15
8	Excited state properties of a series of molecular photocatalysts investigated by time dependent density functional theory. Physical Chemistry Chemical Physics, 2019, 21, 9052-9060.	2.8	12
9	The role of Herzberg-Teller effects on the resonance Raman spectrum of <i>trans</i> -porphycene investigated by time dependent density functional theory. Journal of Chemical Physics, 2018, 148, 124107.	3.0	7
10	Theoretical Investigation of the Electronâ€Transfer Dynamics and Photodegradation Pathways in a Hydrogenâ€Evolving Ruthenium–Palladium Photocatalyst. Chemistry - A European Journal, 2018, 24, 11166-11176.	3.3	12
11	Theoretical Assessment of Excited State Gradients and Resonance Raman Intensities for the Azobenzene Molecule. Journal of Chemical Theory and Computation, 2017, 13, 1263-1274.	5.3	26
12	Comparison of simplified sum-over-state expressions to calculate resonance Raman intensities including Franck-Condon and Herzberg-Teller effects. Journal of Chemical Physics, 2016, 144, 064106.	3.0	35
13	Synthesis and characterization of ruthenium and rhenium dyes with phosphonate anchoring groups. Dalton Transactions, 2016, 45, 9216-9228.	3.3	27
14	Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations of ethyl acetate. European Physical Journal D, 2016, 70, 1.	1.3	5
15	Ï€-Stacking attraction vs. electrostatic repulsion: competing supramolecular interactions in a tpphz-bridged Ru(<scp>ii</scp>)/Au(<scp>iii</scp>) complex. Dalton Transactions, 2016, 45, 12846-12853.	3.3	7
16	CLICK 'n' Sleep: Light‣witch Behavior of Triazole ontaining Tris(bipyridyl)ruthenium Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 4958-4963.	2.0	7
17	Optimization of Hydrogenâ€Evolving Photochemical Molecular Devices. Angewandte Chemie - International Edition, 2015, 54, 6627-6631.	13.8	96
18	Palladium versus Platinum: The Metal in the Catalytic Center of a Molecular Photocatalyst Determines the Mechanism of the Hydrogen Production with Visible Light. Angewandte Chemie - International Edition, 2015, 54, 5044-5048.	13.8	112

JULIEN GUTHMULLER

#	Article	IF	CITATIONS
19	Frontispiece: Palladium versus Platinum: The Metal in the Catalytic Center of a Molecular Photocatalyst Determines the Mechanism of the Hydrogen Production with Visible Light. Angewandte Chemie - International Edition, 2015, 54, .	13.8	0
20	Ultrafast Intramolecular Relaxation and Waveâ€Packet Motion in a Rutheniumâ€Based Supramolecular Photocatalyst. Chemistry - A European Journal, 2015, 21, 7668-7674.	3.3	24
21	Photophysics of Ru(II) Dyads Derived from Pyrenyl-Substitued Imidazo[4,5- <i>f</i>][1,10]phenanthroline Ligands. Journal of Physical Chemistry A, 2015, 119, 3986-3994.	2.5	34
22	Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes. Chemical Communications, 2014, 50, 5227.	4.1	48
23	Redox State Sensitive Spectroscopy of the Model Compound [(H-dcbpy) ₂ Ru ^{II} (NCS) ₂] ^{2–} (dcbpy =) Tj ETQq1 1 0.78431	.4 nggBT ∕C	overlack 107
24	An Assessment of RASSCF and TDDFT Energies and Gradients on an Organic Donor–Acceptor Dye Assisted by Resonance Raman Spectroscopy. Journal of Chemical Theory and Computation, 2013, 9, 543-554.	5.3	38
25	Analysis and characterization of coordination compounds by resonance Raman spectroscopy. Coordination Chemistry Reviews, 2012, 256, 1479-1508.	18.8	95
26	A Novel Ru(II) Polypyridine Black Dye Investigated by Resonance Raman Spectroscopy and TDDFT Calculations. Journal of Physical Chemistry C, 2012, 116, 19968-19977.	3.1	30
27	Assessment of TD-DFT and CC2 Methods for the Calculation of Resonance Raman Intensities: Application to <i>o</i> -Nitrophenol. Journal of Chemical Theory and Computation, 2011, 7, 1082-1089.	5.3	34
28	Protonation effects on the resonance Raman properties of a novel (terpyridine)Ru(4H-imidazole) complex: an experimental and theoretical case study. Physical Chemistry Chemical Physics, 2011, 13, 15580.	2.8	54
29	Photochemical Fate: The First Step Determines Efficiency of H ₂ Formation with a Supramolecular Photocatalyst. Angewandte Chemie - International Edition, 2010, 49, 3981-3984.	13.8	162
30	Simulation of the resonance Raman intensities of a ruthenium–palladium photocatalyst by time dependent density functional theory. Physical Chemistry Chemical Physics, 2010, 12, 14812.	2.8	47
31	Multimode simulation of dimer absorption spectra from first principles calculations: Application to the 3,4,9,10-perylenetetracarboxylic diimide dimer. Journal of Chemical Physics, 2009, 131, 154302.	3.0	50
32	Resonance Raman Scattering of Rhodamine 6G as Calculated by Time-Dependent Density Functional Theory:  Vibronic and Solvent Effects. Journal of Physical Chemistry A, 2008, 112, 3215-3223.	2.5	87
33	Time dependent density functional theory investigation of the resonance Raman properties of the julolidinemalononitrile push-pull chromophore in various solvents. Journal of Chemical Physics, 2007, 127, 164507.	3.0	93