
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7122050/publications.pdf Version: 2024-02-01

CVIIN MIN LEE

#	Article	IF	CITATIONS
1	Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture. Biotechnology Advances, 2022, 54, 107831.	11.7	20
2	Improving the secretory capacity of CHO producer cells: The effect of controlled Blimp1 expression, a master transcription factor for plasma cells. Metabolic Engineering, 2022, 69, 73-86.	7.0	8
3	Small molecule epigenetic modulators for enhancing recombinant antibody production in CHO cell cultures. Biotechnology and Bioengineering, 2022, 119, 820-831.	3.3	4
4	Recombinase-mediated cassette exchange-based screening of a CRISPR/Cas9 library for enhanced recombinant protein production in human embryonic kidney cells: Improving resistance to hyperosmotic stress. Metabolic Engineering, 2022, 72, 247-258.	7.0	5
5	Development of an in vitro screening system for synthetic signal peptide in mammalian cell-based protein production. Applied Microbiology and Biotechnology, 2022, 106, 3571-3582.	3.6	6
6	Amplification of EBNA-1 through a single-plasmid vector-based gene amplification system in HEK293 cells as an efficient transient gene expression system. Applied Microbiology and Biotechnology, 2021, 105, 67-76.	3.6	4
7	Comprehensive characterization of dihydrofolate reductaseâ€mediated gene amplification for the establishment of recombinant human embryonic kidney 293 cells producing monoclonal antibodies. Biotechnology Journal, 2021, 16, e2000351.	3.5	10
8	Selective endocytosis of recombinant human BMPs through cell surface heparan sulfate proteoglycans in CHO cells: BMP-2 and BMP-7. Scientific Reports, 2021, 11, 3378.	3.3	10
9	Streamlined Human Cell-Based Recombinase-Mediated Cassette Exchange Platform Enables Multigene Expression for the Production of Therapeutic Proteins. ACS Synthetic Biology, 2021, 10, 1715-1727.	3.8	10
10	A Chinese hamster transcription start site atlas that enables targeted editing of CHO cells. NAR Genomics and Bioinformatics, 2021, 3, lqab061.	3.2	7
11	A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-sensitive genes. Metabolic Engineering, 2021, 66, 114-122.	7.0	17
12	An optimized genome-wide, virus-free CRISPR screen for mammalian cells. Cell Reports Methods, 2021, 1, 100062.	2.9	14
13	Blockage of undesirable endocytosis of recombinant human growth/differentiation factorâ€5 in Chinese hamster ovary cell cultures requires heparin analogs with specific chain lengths. Biotechnology Journal, 2021, 16, e2100227.	3.5	2
14	Awakening dormant glycosyltransferases in CHO cells with CRISPRa. Biotechnology and Bioengineering, 2020, 117, 593-598.	3.3	27
15	Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nature Communications, 2020, 11, 68.	12.8	74
16	Knockout of sialidase and pro-apoptotic genes in Chinese hamster ovary cells enables the production of recombinant human erythropoietin in fed-batch cultures. Metabolic Engineering, 2020, 57, 182-192.	7.0	16
17	Forskolin Increases cAMP Levels and Enhances Recombinant Antibody Production in CHO Cell Cultures. Biotechnology Journal, 2020, 15, 2000264.	3.5	7
18	Multicopy Targeted Integration for Accelerated Development of High-Producing Chinese Hamster Ovary Cells. ACS Synthetic Biology, 2020, 9, 2546-2561.	3.8	39

#	Article	IF	CITATIONS
19	Comprehensive Analysis of Genomic Safe Harbors as Target Sites for Stable Expression of the Heterologous Gene in HEK293 Cells. ACS Synthetic Biology, 2020, 9, 1263-1269.	3.8	23
20	Multiplex secretome engineering enhances recombinant protein production and purity. Nature Communications, 2020, 11, 1908.	12.8	63
21	BiP Inducer X: An ER Stress Inhibitor for Enhancing Recombinant Antibody Production in CHO Cell Culture. Biotechnology Journal, 2019, 14, 1900130.	3.5	16
22	Reduced apoptosis in Chinese hamster ovary cells via optimized CRISPR interference. Biotechnology and Bioengineering, 2019, 116, 1813-1819.	3.3	39
23	Mitigating Clonal Variation in Recombinant Mammalian Cell Lines. Trends in Biotechnology, 2019, 37, 931-942.	9.3	41
24	Systematic Evaluation of Site-Specific Recombinant Gene Expression for Programmable Mammalian Cell Engineering. ACS Synthetic Biology, 2019, 8, 758-774.	3.8	32
25	Improving recombinant bone morphogenetic protein-4 (BMP-4) production by autoregulatory feedback loop removal using BMP receptor-knockout CHO cell lines. Metabolic Engineering, 2019, 52, 57-67.	7.0	16
26	Analysis of Golgi pH in Chinese hamster ovary cells using ratiometric pHâ€sensitive fluorescent proteins. Biotechnology and Bioengineering, 2019, 116, 1006-1016.	3.3	13
27	Glyco-engineered CHO cell lines producing alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized N-glycosylation profiles. Metabolic Engineering, 2019, 52, 143-152.	7.0	42
28	Co-amplification of EBNA-1 and PyLT through dhfr-mediated gene amplification for improving foreign protein production in transient gene expression in CHO cells. Applied Microbiology and Biotechnology, 2018, 102, 4729-4739.	3.6	5
29	Glutamine synthetase gene knockoutâ€human embryonic kidney 293E cells for stable production of monoclonal antibodies. Biotechnology and Bioengineering, 2018, 115, 1367-1372.	3.3	13
30	Using Titer and Titer Normalized to Confluence Are Complementary Strategies for Obtaining Chinese Hamster Ovary Cell Lines with High Volumetric Productivity of Etanercept. Biotechnology Journal, 2018, 13, e1700216.	3.5	16
31	Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies. Scientific Reports, 2018, 8, 5361.	3.3	58
32	Simple and Robust N -Glycan Analysis Based on Improved 2-Aminobenzoic Acid Labeling for Recombinant Therapeutic Glycoproteins. Journal of Pharmaceutical Sciences, 2018, 107, 1831-1841.	3.3	13
33	Comprehensive Physicochemical and Biological Characterization of the Proposed Biosimilar Darbepoetin Alfa, LBDE, and Its Originator Darbepoetin Alfa, NESP®. BioDrugs, 2018, 32, 153-168.	4.6	3
34	Baicalein Reduces Oxidative Stress in CHO Cell Cultures and Improves Recombinant Antibody Productivity. Biotechnology Journal, 2018, 13, e1700425.	3.5	27
35	Revealing Key Determinants of Clonal Variation in Transgene Expression in Recombinant CHO Cells Using Targeted Genome Editing. ACS Synthetic Biology, 2018, 7, 2867-2878.	3.8	39
36	Untangling the mechanism of 3â€methyladenine in enhancing the specific productivity: Transcriptome analysis of recombinant Chinese hamster ovary cells treated with 3â€methyladenine. Biotechnology and Bioengineering, 2018, 115, 2243-2254.	3.3	8

#	Article	IF	CITATIONS
37	Minimizing Clonal Variation during Mammalian Cell Line Engineering for Improved Systems Biology Data Generation. ACS Synthetic Biology, 2018, 7, 2148-2159.	3.8	51
38	Improving the production of recombinant human bone morphogenetic proteinâ€4 in Chinese hamster ovary cell cultures by inhibition of undesirable endocytosis. Biotechnology and Bioengineering, 2018, 115, 2565-2575.	3.3	14
39	Differential expression of microRNAs in recombinant Chinese hamster ovary cells treated with sodium butyrate using digital RNA counting. Journal of Biotechnology, 2018, 283, 37-42.	3.8	7
40	Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion. Scientific Reports, 2017, 7, 40388.	3.3	48
41	Investigation of relationship between EBNA-1 expression level and specific foreign protein productivity in transient gene expression of HEK293 cells. Process Biochemistry, 2017, 55, 182-186.	3.7	8
42	Understanding of decreased sialylation of Fcâ€fusion protein in hyperosmotic recombinant Chinese hamster ovary cell culture: <i>N</i> â€glycosylation gene expression and <i>N</i> â€linked glycan antennary profile. Biotechnology and Bioengineering, 2017, 114, 1721-1732.	3.3	24
43	Anti-Apoptosis Engineering for Improved Protein Production from CHO Cells. Methods in Molecular Biology, 2017, 1603, 71-85.	0.9	15
44	Proteomic analysis of host cell protein dynamics in the supernatant of Fcâ€fusion proteinâ€producing CHO DG44 and DUKXâ€B11 cell lines in batch and fedâ€batch cultures. Biotechnology and Bioengineering, 2017, 114, 2267-2278.	3.3	21
45	Proteomic Analysis of Host Cell Protein Dynamics in the Culture Supernatants of Antibody-Producing CHO Cells. Scientific Reports, 2017, 7, 44246.	3.3	52
46	Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnology Advances, 2017, 35, 64-76.	11.7	58
47	Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells. Applied Microbiology and Biotechnology, 2017, 101, 1035-1045.	3.6	24
48	The molecular weight and concentration of dextran sulfate affect cell growth and antibody production in CHO cell cultures. Biotechnology Progress, 2016, 32, 1113-1122.	2.6	26
49	Chemical inhibition of autophagy: Examining its potential to increase the specific productivity of recombinant CHO cell lines. Biotechnology and Bioengineering, 2016, 113, 1953-1961.	3.3	14
50	Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance. Journal of Biotechnology, 2016, 231, 136-140.	3.8	14
51	Heparan sulfate proteoglycan synthesis in CHO DG44 and HEK293 cells. Biotechnology and Bioprocess Engineering, 2016, 21, 439-445.	2.6	9
52	Combinatorial treatment with lithium chloride enhances recombinant antibody production in transiently transfected CHO and HEK293E cells. Biotechnology and Bioprocess Engineering, 2016, 21, 667-675.	2.6	4
53	Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity. Biotechnology Journal, 2016, 11, 487-496.	3.5	67
54	Alleviation of proteolytic degradation of recombinant human bone morphogenetic protein-4 by repeated batch culture of Chinese hamster ovary cells. Process Biochemistry, 2016, 51, 1078-1084.	3.7	9

#	Article	IF	CITATIONS
55	Accelerated homologyâ€directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment. Biotechnology and Bioengineering, 2016, 113, 2518-2523.	3.3	58
56	Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells. Scientific Reports, 2015, 5, 18016.	3.3	23
57	Understanding of altered <i>N</i> â€glycosylationâ€related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting. Biotechnology and Bioengineering, 2015, 112, 1583-1593.	3.3	27
58	Effect of Bclâ€x _L overexpression on sialylation of Fcâ€fusion protein in recombinant <scp>C</scp> hinese hamster ovary cell cultures. Biotechnology Progress, 2015, 31, 1133-1136.	2.6	14
59	Purification of TNFR-Fc produced in recombinant CHO cells: Characterization of product-related impurities. Process Biochemistry, 2015, 50, 1313-1317.	3.7	3
60	Oneâ€step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnology Journal, 2015, 10, 1446-1456.	3.5	108
61	Characterization and expression of proprotein convertases in CHO cells: Efficient proteolytic maturation of human bone morphogenetic proteinâ€7. Biotechnology and Bioengineering, 2015, 112, 560-568.	3.3	10
62	Cell Engineering for Therapeutic Protein Production. Cell Engineering, 2015, , 565-590.	0.4	3
63	Effect of glucose feeding on the glycosylation quality of antibody produced by a human cell line, F2N78, in fed-batch culture. Applied Microbiology and Biotechnology, 2014, 98, 3509-3515.	3.6	17
64	Digital mRNA profiling of N-glycosylation gene expression in recombinant Chinese hamster ovary cells treated with sodium butyrate. Journal of Biotechnology, 2014, 171, 56-60.	3.8	20
65	Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells. Applied Microbiology and Biotechnology, 2014, 98, 5417-5425.	3.6	33
66	Effect of glutamine substitution by TCA cycle intermediates on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. Journal of Biotechnology, 2014, 180, 23-29.	3.8	39
67	Effect of lithium chloride on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. Applied Microbiology and Biotechnology, 2014, 98, 9239-9248.	3.6	26
68	Gadd45-induced cell cycle G2/M arrest for improved transient gene expression in Chinese hamster ovary cells. Biotechnology and Bioprocess Engineering, 2014, 19, 386-393.	2.6	5
69	Autophagy and its implication in Chinese hamster ovary cell culture. Biotechnology Letters, 2013, 35, 1753-1763.	2.2	34
70	Bcl-2 overexpression in CHO cells improves polyethylenimine-mediated gene transfection. Process Biochemistry, 2013, 48, 1436-1440.	3.7	7
71	Development of recombinant Chinese hamster ovary cell lines for therapeutic protein production. Current Opinion in Chemical Engineering, 2013, 2, 391-397.	7.8	58
72	Effect of culture pH on recombinant antibody production by a new human cell line, F2N78, grown in suspension at 33.0°C and 37.0°C. Applied Microbiology and Biotechnology, 2013, 97, 5283-5291.	3.6	20

#	Article	IF	CITATIONS
73	Antiâ€cell death engineering of CHO cells: Coâ€overexpression of Bclâ€2 for apoptosis inhibition, Beclinâ€1 for autophagy induction. Biotechnology and Bioengineering, 2013, 110, 2195-2207.	3.3	43
74	Overexpression of PACEsol improves BMP-7 processing in recombinant CHO cells. Journal of Biotechnology, 2013, 164, 336-339.	3.8	14
75	Effect of Bclâ€x _L overexpression on lactate metabolism in chinese hamster ovary cells producing antibody. Biotechnology Progress, 2013, 29, 1594-1598.	2.6	2
76	Development of apoptosis-resistant CHO cell line expressing PyLT for the enhancement of transient antibody production. Process Biochemistry, 2012, 47, 2557-2561.	3.7	7
77	Differential induction of autophagy in caspase-3/7 down-regulating and Bcl-2 overexpressing recombinant CHO cells subjected to sodium butyrate treatment. Journal of Biotechnology, 2012, 161, 34-41.	3.8	19
78	Monitoring of autophagy in Chinese hamster ovary cells using flow cytometry. Methods, 2012, 56, 375-382.	3.8	45
79	Current state and perspectives on erythropoietin production. Applied Microbiology and Biotechnology, 2012, 95, 1405-1416.	3.6	23
80	Estimation of autophagy pathway genes for autophagy induction: Overexpression of Atg9A does not induce autophagy in recombinant Chinese hamster ovary cells. Biochemical Engineering Journal, 2012, 68, 221-226.	3.6	11
81	Differential inâ€gel electrophoresis (DIGE) analysis of CHO cells under hyperosmotic pressure: Osmoprotective effect of glycine betaine addition. Biotechnology and Bioengineering, 2012, 109, 1395-1403.	3.3	14
82	Rapamycin treatment inhibits CHO cell death in a serumâ€free suspension culture by autophagy induction. Biotechnology and Bioengineering, 2012, 109, 3093-3102.	3.3	35
83	Effect of sodium butyrate on autophagy and apoptosis in Chinese hamster ovary cells. Biotechnology Progress, 2012, 28, 349-357.	2.6	34
84	A role of GADD153 in ER stress-induced apoptosis in recombinant Chinese hamster ovary cells. Biotechnology and Bioprocess Engineering, 2012, 17, 446-455.	2.6	3
85	CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Applied Microbiology and Biotechnology, 2012, 93, 917-930.	3.6	599
86	Bcl-xL overexpression delays the onset of autophagy and apoptosis in hyperosmotic recombinant Chinese hamster ovary cell cultures. Journal of Biotechnology, 2011, 156, 52-55.	3.8	14
87	Effect of Bcl-xL overexpression on erythropoietin production in recombinant Chinese hamster ovary cells treated with dimethyl sulfoxide. Process Biochemistry, 2011, 46, 2201-2204.	3.7	4
88	Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates. Applied Microbiology and Biotechnology, 2011, 89, 1917-1928.	3.6	29
89	Effects of culture temperature and pH on flag-tagged COMP angiopoietin-1 (FCA1) production from recombinant CHO cells: FCA1 aggregation. Applied Microbiology and Biotechnology, 2011, 91, 305-315.	3.6	20
90	Combinatorial engineering of ldh-a and bcl-2 for reducing lactate production and improving cell growth in dihydrofolate reductase-deficient Chinese hamster ovary cells. Applied Microbiology and Biotechnology, 2011, 92, 779-790.	3.6	35

#	Article	IF	CITATIONS
91	Effect of constitutively active ras overexpression on cell growth in recombinant chinese hamster ovary cells. Biotechnology Progress, 2011, 27, 577-580.	2.6	3
92	Proteomic understanding of intracellular responses of recombinant chinese hamster ovary cells adapted to grow in serumâ€free suspension culture. Biotechnology Progress, 2011, 27, 1680-1688.	2.6	9
93	Autophagy and apoptosis of recombinant Chinese hamster ovary cells during fedâ€batch culture: Effect of nutrient supplementation. Biotechnology and Bioengineering, 2011, 108, 2182-2192.	3.3	33
94	A proteomic approach for identifying cellular proteins interacting with erythropoietin in recombinant Chinese hamster ovary cells. Biotechnology Progress, 2010, 26, 246-251.	2.6	7
95	A DIGE approach for the assessment of differential expression of the CHO proteome under sodium butyrate addition: Effect of Bclâ€x _L overexpression. Biotechnology and Bioengineering, 2010, 105, 358-367.	3.3	25
96	Hyperosmotic stress induces autophagy and apoptosis in recombinant Chinese hamster ovary cell culture. Biotechnology and Bioengineering, 2010, 105, 1187-1192.	3.3	64
97	Effect of inducible coâ€overexpression of protein disulfide isomerase and endoplasmic reticulum oxidoreductase on the specific antibody productivity of recombinant Chinese hamster ovary cells. Biotechnology and Bioengineering, 2010, 107, 337-346.	3.3	36
98	Protein reference mapping of dihydrofolate reductaseâ€deficient CHO DG44 cell lines using 2â€dimensional electrophoresis. Proteomics, 2010, 10, 2292-2302.	2.2	17
99	Effect of Bclâ€x _L overexpression on apoptosis and autophagy in recombinant Chinese hamster ovary cells under nutrientâ€deprived condition. Biotechnology and Bioengineering, 2009, 103, 757-766.	3.3	51
100	Enhanced interferonâ€Ĵ² production by CHO cells through elevated osmolality and reduced culture temperature. Biotechnology Progress, 2009, 25, 1440-1447.	2.6	33
101	Bclâ€xL overexpression does not enhance specific erythropoietin productivity of recombinant CHO cells grown at 33°C and 37°C. Biotechnology Progress, 2009, 25, 252-256.	2.6	18
102	Calnexin overexpression sensitizes recombinant CHO cells to apoptosis induced by sodium butyrate treatment. Cell Stress and Chaperones, 2009, 14, 49-60.	2.9	11
103	Enhancement of recombinant antibody production in HEK 293E cells by WPRE. Biotechnology and Bioprocess Engineering, 2009, 14, 633-638.	2.6	11
104	Development of serum-free medium supplemented with hydrolysates for the production of therapeutic antibodies in CHO cell cultures using design of experiments. Applied Microbiology and Biotechnology, 2009, 83, 639-648.	3.6	60
105	Effect of Akt overexpression on programmed cell death in antibody-producing Chinese hamster ovary cells. Journal of Biotechnology, 2009, 139, 89-94.	3.8	43
106	Effect of Ca2+ and Mg2+ concentration in culture medium on the activation of recombinant factor IX produced in Chinese hamster ovary cells. Journal of Biotechnology, 2009, 142, 275-278.	3.8	12
107	Use of NaCl prevents aggregation of recombinant COMP–Angiopoietin-1 in Chinese hamster ovary cells. Journal of Biotechnology, 2009, 143, 145-150.	3.8	18
108	Effect of XIAP overexpression on sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells producing erythropoietin. Journal of Biotechnology, 2009, 144, 299-303.	3.8	21

#	Article	IF	CITATIONS
109	High-level Expression and Purification of a Designed Angiopoietin-1 Chimeric Protein, COMP-Ang1, Produced in Chinese Hamster Ovary Cells. Protein Journal, 2008, 27, 319-326.	1.6	16
110	Characterization of site-specific recombination mediated by Cre recombinase during the development of erythropoietin producing CHO cell lines. Biotechnology and Bioprocess Engineering, 2008, 13, 418-423.	2.6	9
111	Nutrient deprivation induces autophagy as well as apoptosis in Chinese hamster ovary cell culture. Biotechnology and Bioengineering, 2008, 99, 678-685.	3.3	101
112	Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnology Journal, 2008, 3, 624-630.	3.5	86
113	Enhanced Human Thrombopoietin Production by Sodium Butyrate Addition to Serum-Free Suspension Culture of Bcl-2-Overexpressing CHO Cells. Biotechnology Progress, 2008, 21, 50-57.	2.6	46
114	Limitations to the comparative proteomic analysis of thrombopoietin producing Chinese hamster ovary cells treated with sodium butyrate. Journal of Biotechnology, 2008, 133, 461-468.	3.8	33
115	Autophagy and apoptosis in Chinese hamster ovary cell culture. Autophagy, 2008, 4, 70-72.	9.1	16
116	Use of Flp-mediated cassette exchange in the development of a CHO cell line stably producing erythropoietin. Journal of Microbiology and Biotechnology, 2008, 18, 1342-51.	2.1	14
117	A simple analysis system for the estimation of recombination efficiency using fluorescence-activated cell sorting. Journal of Biotechnology, 2007, 127, 373-384.	3.8	5
118	Effect of doxycycline-regulated protein disulfide isomerase expression on the specific productivity of recombinant CHO cells: Thrombopoietin and antibody. Biotechnology and Bioengineering, 2007, 98, 611-615.	3.3	67
119	Down-regulation of cold-inducible RNA-binding protein does not improve hypothermic growth of Chinese hamster ovary cells producing erythropoietin. Metabolic Engineering, 2007, 9, 208-216.	7.0	17
120	Influence of co-down-regulation of caspase-3 and caspase-7 by siRNAs on sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metabolic Engineering, 2007, 9, 452-464.	7.0	68
121	Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin. Applied Microbiology and Biotechnology, 2007, 74, 152-159.	3.6	124
122	Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44). Applied Microbiology and Biotechnology, 2007, 76, 659-665.	3.6	58
123	Expression and purification of recombinant human Angiopoietin-1 produced in Chinese hamster ovary cells. In Vitro Cellular and Developmental Biology - Animal, 2007, 43, 162-167.	1.5	4
124	Adaptation of Chinese hamster ovary cells to low culture temperature: Cell growth and recombinant protein production. Journal of Biotechnology, 2006, 122, 463-472.	3.8	61
125	Limitations to the Development of Humanized Antibody Producing Chinese Hamster Ovary Cells Using Glutamine Synthetase-Mediated Gene Amplification. Biotechnology Progress, 2006, 22, 770-780.	2.6	50
126	Biphasic culture strategy for enhancing volumetric erythropoietin productivity of Chinese hamster ovary cells. Enzyme and Microbial Technology, 2006, 39, 362-365.	3.2	28

#	Article	IF	CITATIONS
127	Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnology and Bioengineering, 2006, 93, 361-371.	3.3	135
128	Selection strategies for the establishment of recombinant Chinese hamster ovary cell line with dihydrofolate reductase-mediated gene amplification. Applied Microbiology and Biotechnology, 2005, 69, 162-169.	3.6	35
129	Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0°C. Biotechnology and Bioengineering, 2005, 89, 345-356.	3.3	126
130	Expression and purification of recombinant human angiopoietin-2 produced in Chinese hamster ovary cells. Protein Expression and Purification, 2005, 39, 175-183.	1.3	16
131	Effect of simultaneous application of stressful culture conditions on specific productivity and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnology Progress, 2004, 20, 1293-1296.	2.6	32
132	Enhancing Effect of Low Culture Temperature on Specific Antibody Productivity of Recombinant Chinese Hamster Ovary Cells: Clonal Variation. Biotechnology Progress, 2004, 20, 1683-1688.	2.6	79
133	Effect of doxycycline-regulated calnexin and calreticulin expression on specific thrombopoietin productivity of recombinant chinese hamster ovary cells. Biotechnology and Bioengineering, 2004, 85, 539-546.	3.3	72
134	Effect of sodium butyrate on the production, heterogeneity and biological activity of human thrombopoietin by recombinant Chinese hamster ovary cells. Journal of Biotechnology, 2004, 112, 323-335.	3.8	82
135	Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2003, 82, 289-298.	3.3	225
136	Development of apoptosis-resistant dihydrofolate reductase-deficient Chinese hamster ovary cell line. Biotechnology and Bioengineering, 2003, 82, 872-876.	3.3	31
137	Effect of Doxycycline-Regulated ERp57 Expression on Specific Thrombopoietin Productivity of Recombinant CHO Cells. Biotechnology Progress, 2003, 19, 179-184.	2.6	38
138	Proteome Analysis of Antibody-Expressing CHO Cells in Response to Hyperosmotic Pressure. Biotechnology Progress, 2003, 19, 1734-1741.	2.6	68
139	Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. Journal of Biotechnology, 2002, 95, 237-248.	3.8	103
140	Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnology and Bioengineering, 2002, 78, 217-228.	3.3	85
141	Key Determinants in the Occurrence of Clonal Variation in Humanized Antibody Expression of CHO Cells during Dihydrofolate Reductase Mediated Gene Amplification. Biotechnology Progress, 2001, 17, 69-75.	2.6	51
142	Effects of Cloned Gene Dosage on the Response of Recombinant CHO Cells to Hyperosmotic Pressure in Regard to Cell Growth and Antibody Production. Biotechnology Progress, 2001, 17, 993-999.	2.6	34
143	Hyperosmotic pressure enhances immunoglobulin transcription rates and secretion rates of KR12H-2 transfectoma. Biotechnology and Bioengineering, 2000, 68, 260-268.	3.3	45
144	Overexpression ofbcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnology and Bioengineering, 2000, 71, 184-193.	3.3	116

#	Article	IF	CITATIONS
145	Osmoprotective effect of glycine betaine on foreign protein production in hyperosmotic recombinant Chinese hamster ovary cell cultures differs among cell lines. Biotechnology and Bioengineering, 2000, 70, 167-175.	3.3	67
146	Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnology and Bioengineering, 1998, 58, 73-84.	3.3	192
147	Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: Stability in the absence of selective pressure. Biotechnology and Bioengineering, 1998, 60, 679-688.	3.3	132
148	Observations consistent with autocrine stimulation of hybridoma cell growth and implications for large-scale antibody production. Biotechnology Letters, 1992, 14, 257-262.	2.2	17
149	Application of population balance model to explain loss of hybridoma antibody productivity. Biotechnology Progress, 1991, 7, 72-75.	2.6	41
150	Production of monoclonal antibody using free-suspended and immobilized hybridoma cells: Effect of serum. Biotechnology and Bioengineering, 1991, 38, 821-830.	3.3	82
151	Immobilization can improve the stability of hybridoma antibody productivity in serum-free media. Biotechnology and Bioengineering, 1990, 36, 1049-1055.	3.3	79
152	Effect of mechanical agitation on hybridoma cell growth. Biotechnology Letters, 1988, 10, 625-628.	2.2	40
153	Effect of anchorage dependency on growth rate and monoclonal antibody production of hybridoma cells. Biotechnology Letters, 1988, 10, 307-312.	2.2	6