
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7121748/publications.pdf Version: 2024-02-01

IIIN-MIN LIII

#	Article	IF	CITATIONS
1	Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 282-288.	3.9	203
2	Triptycene-Based Hyper-Cross-Linked Polymer Sponge for Gas Storage and Water Treatment. Macromolecules, 2015, 48, 8509-8514.	4.8	178
3	Regio―and Enantioselective Photodimerization within the Confined Space of a Homochiral Ruthenium/Palladium Heterometallic Coordination Cage. Angewandte Chemie - International Edition, 2017, 56, 3852-3856.	13.8	162
4	A new fluorescent chemosensor for Fe3+ and Cu2+ based on calix[4]arene. Tetrahedron Letters, 2002, 43, 9209-9212.	1.4	119
5	Calix[4]arene based dye-sensitized Pt@UiO-66-NH2 metal-organic framework for efficient visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 206, 426-433.	20.2	117
6	Configurations of a Calix[8]arene and a C60/Calix[8]arene Complex on a Au(111) Surface. Angewandte Chemie - International Edition, 2003, 42, 2747-2751.	13.8	103
7	Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes. Journal of Materials Chemistry C, 2015, 3, 10066-10069.	5.5	103
8	Inherently Chiral Calixarenes: Synthesis, Optical Resolution, Chiral Recognition and Asymmetric Catalysis. International Journal of Molecular Sciences, 2011, 12, 429-455.	4.1	92
9	Structural Diversity of a Series of Mn(II), Cd(II), and Co(II) Complexes with Pyridine Donor Diimide Ligands. Crystal Growth and Design, 2011, 11, 2763-2772.	3.0	84
10	Highly efficient and stable organic sensitizers with duplex starburst triphenylamine and carbazole donors for liquid and quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 8988-8994.	10.3	84
11	Cage Based Crystalline Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 3843-3848.	13.7	84
12	Highly crystalline covalent organic frameworks from flexible building blocks. Chemical Communications, 2016, 52, 4706-4709.	4.1	83
13	A multifunctional poly-N-vinylcarbazole interlayer in perovskite solar cells for high stability and efficiency: a test with new triazatruxene-based hole transporting materials. Journal of Materials Chemistry A, 2017, 5, 1913-1918.	10.3	83
14	Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host. Chemical Communications, 2014, 50, 788-791.	4.1	67
15	Networked Cages for Enhanced CO ₂ Capture and Sensing. Advanced Science, 2018, 5, 1800141.	11.2	65
16	Assembly of Robust and Porous Hydrogen-Bonded Coordination Frameworks: Isomorphism, Polymorphism, and Selective Adsorption. Inorganic Chemistry, 2010, 49, 10166-10173.	4.0	64
17	Molecular Barrel by a Hooping Strategy: Synthesis, Structure, and Selective CO ₂ Adsorption Facilitated by Lone Pairâ°'l€ Interactions. Journal of the American Chemical Society, 2017, 139, 635-638.	13.7	62
18	Effect of Hydrocarbon Chain Length of Disubstituted Triphenyl-amine-Based Organic Dyes on Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 22002-22008.	3.1	59

#	Article	IF	CITATIONS
19	Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives. Journal of Hazardous Materials, 2013, 262, 464-471.	12.4	57
20	Photocatalytic H ₂ Production from Water by Metalâ€free Dyeâ€sensitized TiO ₂ Semiconductors: The Role and Development Process of Organic Sensitizers. ChemSusChem, 2020, 13, 5863-5895.	6.8	57
21	Triptycene-based microporous polyimides: Synthesis and their high selectivity for CO2 capture. Polymer, 2014, 55, 3642-3647.	3.8	55
22	Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability. Journal of Power Sources, 2018, 378, 483-490.	7.8	51
23	Assembly of a 1D Coordination Polymer through in Situ Formation of a New Ligand by Double Câ^C Coupling on CHCl3 under Solvothermal Conditions. Inorganic Chemistry, 2009, 48, 8659-8661.	4.0	49
24	Hydrothermal Fabrication of Quasiâ€Oneâ€Dimensional Singleâ€Crystalline Anatase TiO ₂ Nanostructures on FTO Glass and Their Applications in Dye‣ensitized Solar Cells. Chemistry - A European Journal, 2011, 17, 1352-1357.	3.3	46
25	Construction of 0D to 3D cadmium complexes from different pyridyl diimide ligands. Dalton Transactions, 2012, 41, 4626.	3.3	46
26	Regio―and Enantioselective Photodimerization within the Confined Space of a Homochiral Ruthenium/Palladium Heterometallic Coordination Cage. Angewandte Chemie, 2017, 129, 3910-3914.	2.0	42
27	Highly selective fluorescent sensing of Pb2+ by a new calix[4]arene derivative. Tetrahedron Letters, 2006, 47, 1905-1908.	1.4	41
28	Anion effect on the structural diversity of three 1D coordination polymers based on a pyridyl diimide ligand. CrystEngComm, 2012, 14, 2152.	2.6	40
29	Microporous Polymers from a Carbazoleâ€Based Triptycene Monomer: Synthesis and Their Applications for Gas Uptake. Chemistry - an Asian Journal, 2016, 11, 294-298.	3.3	36
30	Porphyrin-based imine gels for enhanced visible-light photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 3195-3201.	10.3	36
31	A porous hybrid material based on calixarene dye and TiO ₂ demonstrating high and stable photocatalytic performance. Journal of Materials Chemistry A, 2019, 7, 19852-19861.	10.3	35
32	Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil. Chemosphere, 2014, 109, 1-6.	8.2	32
33	Novel organic dyes incorporating a carbazole or dendritic 3,6-diiodocarbazole unit for efficient dye-sensitized solar cells. Dyes and Pigments, 2014, 100, 269-277.	3.7	32
34	Synthesis and properties of organic microporous polymers from the monomer of hexaphenylbenzene based triptycene. Polymer, 2016, 82, 100-104.	3.8	32
35	A triptycene-based two-dimensional porous organic polymeric nanosheet. Polymer Chemistry, 2017, 8, 5533-5538.	3.9	32
36	Synthesis and properties of triptycene-based microporous polymers. Polymer, 2013, 54, 6942-6946.	3.8	31

#	Article	IF	CITATIONS
37	Stable organic dyes based on the benzo[1,2-b:4,5-bâ€2]dithiophene donor for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 8083-8090.	10.3	30
38	Hydrophobic Hole-Transporting Materials Incorporating Multiple Thiophene Cores with Long Alkyl Chains for Efficient Perovskite Solar Cells. Electrochimica Acta, 2016, 209, 529-540.	5.2	29
39	Constructing Heterogeneous Direct Z-Scheme Photocatalysts Based on Metal–Organic Cages and Graphitic-C ₃ N ₄ for High-Efficiency Photocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 25960-25971.	8.0	29
40	Preparation of High Performance Pt/CNT Catalysts Stabilized by Ethylenediaminetetraacetic Acid Disodium Salt. Fuel Cells, 2007, 7, 402-407.	2.4	28
41	Facile synthesis of porous hybrid materials based on Calix-3 dye and TiO ₂ for high photocatalytic water splitting performance with excellent stability. Journal of Materials Chemistry A, 2019, 7, 2993-2999.	10.3	27
42	Starburst triarylamine based dyes bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 11909.	2.8	26
43	A CdSO ₄ -Type 3D Metal–Organic Framework Showing Coordination Dynamics on Cu ²⁺ Axial Sites: Vapochromic Response and Guest Sorption Selectivity. Crystal Growth and Design, 2013, 13, 1518-1525.	3.0	26
44	Highly efficient and stable cyclometalated ruthenium(II) complexes as sensitizers for dye-sensitized solar cells. Electrochimica Acta, 2015, 174, 494-501.	5.2	24
45	Dyeâ€Sensitized Solar Cells with Improved Performance using <i>Cone</i> alix[4]Arene Based Dyes. ChemSusChem, 2015, 8, 280-287.	6.8	24
46	Porous Organic Polymer from Aggregation-Induced Emission Macrocycle for White-Light Emission. Macromolecules, 2018, 51, 7863-7871.	4.8	24
47	Design of an alkaline pyridyl acceptor-based calix[4]arene dye and synthesis of stable calixarene–TiO ₂ porous hybrid materials for efficient photocatalysis. Journal of Materials Chemistry A, 2020, 8, 8883-8891.	10.3	24
48	Pd2L2 metallacycles as molecular containers for small molecules. Dalton Transactions, 2010, 39, 11171.	3.3	22
49	Novel carbazole based sensitizers for efficient dye-sensitized solar cells: Role of the hexyl chain. Dyes and Pigments, 2015, 114, 18-23.	3.7	21
50	Configurations of a Calix[8]arene and a C60/Calix[8]arene Complex on a Au(111) Surface. Angewandte Chemie, 2003, 115, 2853-2857.	2.0	20
51	Preparation, characterization and catalytic activity of Zr embedded MSU-V with high thermal and hydrothermal stability. Microporous and Mesoporous Materials, 2006, 95, 306-311.	4.4	19
52	A selective fluorescent probe for La3+ and Y3+ based on calix[6]arene. Tetrahedron Letters, 2004, 45, 6071-6074.	1.4	18
53	A fluorescent calixarene-based dimeric capsule constructed <i>via</i> a M ^{ll} –terpyridine interaction: cage structure, inclusion properties and drug release. RSC Advances, 2018, 8, 22530-22535.	3.6	18
54	Adlayer Structures of Calixarenes on Au(111) Surface Studied with STM. Journal of Physical Chemistry B, 2003, 107, 13111-13116.	2.6	17

#	Article	IF	CITATIONS
55	Hydrogen storage of multiwalled carbon nanotubes coated with Pd-Ni nanoparticles under moderate conditions. Science Bulletin, 2006, 51, 2959-2963.	1.7	17
56	Determination of fluoride by an ion chromatography system using the preconcentration on nanometer-size zirconia. Journal of Analytical Chemistry, 2007, 62, 583-587.	0.9	16
57	Direct Z-scheme photochemical hybrid systems: Loading porphyrin-based metal-organic cages on graphitic-C3N4 to dramatically enhance photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2022, 43, 2249-2258.	14.0	16
58	Ruthenium dyes with heteroleptic tridentate 2,6-bis(benzimidazol-2-yl)-pyridine for dye-sensitized solar cells: Enhancement in performance through structural modifications. Inorganica Chimica Acta, 2012, 392, 388-395.	2.4	15
59	Immobilization of metal-organic molecular cage on g-C3N4 semiconductor for enhancement of photocatalytic H2 generation. Chinese Journal of Catalysis, 2019, 40, 1198-1204.	14.0	15
60	Highly selective fluorescent calix[4]arene chemosensor for acidic amino acids in pure aqueous media. Tetrahedron Letters, 2012, 53, 2918-2921.	1.4	14
61	Photocatalysts for H 2 Generation from Starburst Triphenylamine/Carbazole Donorâ€Based Metalâ€Free Dyes and Porous Anatase TiO 2 Cube. ChemSusChem, 2020, 13, 1037-1043.	6.8	14
62	Undulated 2D Covalent Organic Frameworks Based on Bowlâ€ S haped Cyclotricatechylene. Chinese Journal of Chemistry, 2016, 34, 783-787.	4.9	13
63	Simultaneous extraction of Cr(VI) and Cu(II) from humic acid with new synthesized EDTA derivatives. Chemosphere, 2012, 88, 730-735.	8.2	12
64	Novel phenanthroline-based ruthenium complexes for dye-sensitized solar cells: enhancement in performance through fluoro-substitution. RSC Advances, 2013, 3, 19311.	3.6	12
65	Bridging Chiral Calix[4]arenes: Description, Optical Resolution, and Absolute Configuration Determination. European Journal of Organic Chemistry, 2016, 2016, 1012-1016.	2.4	12
66	Preparation of a series of aCTV-based covalent organic frameworks and substituent effects on their properties. CrystEngComm, 2016, 18, 1039-1045.	2.6	12
67	Porous Hybrid Materials Based on Mesotetrakis(Hydroxyphenyl) Porphyrins and TiO2 for Efficient Visible-Light-Driven Hydrogen Production. Catalysts, 2020, 10, 656.	3.5	12
68	Macrocyclic, linear and starlike assemblies of calix[4]arenes covalently bridged by methylenes at the upper rims: simple route to novel receptors with defined polycavities. Tetrahedron, 2002, 58, 3729-3736.	1.9	11
69	Synthesis of terpyridine-substituted calix[n]arenes. Tetrahedron Letters, 2009, 50, 1303-1306.	1.4	11
70	An Approach to Optically Pure Bridging Chiral <i>p</i> - <i>tert</i> -Butylcalix[4]arenes through a Homologous Anionic Ortho-Fries Rearrangement. Journal of Organic Chemistry, 2016, 81, 10683-10687.	3.2	11
71	The Design of a Highly Selective Fluorescent Chemosensor for Cu(II) within Wide pH Region and a Molecular Switch Controlled by pH. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 51, 165-171.	1.6	9
72	Fluorescent calix[4]arene chemosensor for acidic and basic amino acids in pure aqueous media. RSC Advances, 2014, 4, 28046-28051.	3.6	9

#	Article	IF	CITATIONS
73	Conjugated Porous Networks Based on Cyclotriveratrylene Building Block for Hydrogen Adsorption. Chinese Journal of Chemistry, 2013, 31, 617-623.	4.9	8
74	Multichromophoric di-anchoring sensitizers incorporating a ruthenium complex and an organic triphenyl amine dye for efficient dye-sensitized solar cells. Inorganic Chemistry Frontiers, 2015, 2, 1040-1044.	6.0	7
75	Bridging Chiral <i>deâ€ŧert</i> â€Butylcalix[4]arenes: Diastereomeric Crystallizationâ€Based Optical Resolution and Determination of Absolute Configuration. ChemistrySelect, 2018, 3, 10153-10156.	1.5	7
76	Robust Heterogeneous Photocatalyst for Visible-Light-Driven Hydrogen Evolution Promotion: Immobilization of a Fluorescein Dye-Encapsulated Metal–Organic Cage on TiO2. ACS Applied Materials & Interfaces, 2021, 13, 57230-57240.	8.0	7
77	Controllable Visible-Light-Driven Syngas Evolution by a Ternary Titania Hybrid Sacrificial System with a Photosensitive Metal–Organic Pd ^{II} Cage and Re ^I Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 8254-8264.	6.7	7
78	Preparation, Characterization and Electrocatalytic Properties of Promoted PtMoSi/C Catalysts. Acta Physico-chimica Sinica, 2007, 23, 92-97.	0.6	6
79	Selectively formylated and bridged calix[6]arene derivatives at the upper rim. Tetrahedron, 2007, 63, 9939-9946.	1.9	6
80	Synthesis, fluorescence, and sorption properties of cobalt coordination polymers of the N,N′-bis(4-pyridylmethyl)naphthalene diimide ligand. Transition Metal Chemistry, 2015, 40, 691-697.	1.4	6
81	A Robust Photocatalytic Hybrid Material Composed of Metalâ€Organic Cages and TiO 2 for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Chemistry - an Asian Journal, 2021, 16, 2055-2062.	3.3	6
82	Two-Dimensional Layered Metal - Organic Frameworks of Lanthanum(III) Pyridine-2,6-dicarboxylate. Australian Journal of Chemistry, 2009, 62, 1667.	0.9	5
83	Application of Novel Calix[4]arene Metal-free Sensitizers in Dye-sensitized Photoelectrochemical Cells for Water Splitting. Chemical Research in Chinese Universities, 2020, 36, 1091-1096.	2.6	5
84	Calix[4]arene based selective fluorescent chemosensor for organic acid recognition. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 348-352.	0.4	4
85	A fluorescent probe for fluoride ion based on 2-aminopyridyl-bridged calix[6]arene. Chinese Chemical Letters, 2009, 20, 1191-1194.	9.0	4
86	Enhanced Visible-Light-Driven H ₂ Evolution Activity of g-C ₃ N ₄ Photocatalysts <i>via</i> Calix[4]arene Dye Hybridization. ACS Applied Energy Materials, 2021, 4, 14415-14424.	5.1	4
87	Bias-Free Photoelectrochemical Water Splitting Cells Constructed by Calixarene Dyes and Molecular Ru Catalysts via Pyridyl Anchoring Groups. ACS Applied Energy Materials, 2021, 4, 14671-14680.	5.1	4
88	Direct Z-Scheme Heterojunction Catalysts Constructed by Graphitic-C3N4 and Photosensitive Metal-Organic Cages for Efficient Photocatalytic Hydrogen Evolution. Nanomaterials, 2022, 12, 890.	4.1	3
89	MNi4.8Sn0.2(M=La, Nd)-supported multi-walled carbon nanotube composites as hydrogen storage materials. Science Bulletin, 2007, 52, 1616-1622.	1.7	2
90	Synthesis of inherently chiral wide rim ABC substituted calix[6]arene derivatives. Supramolecular Chemistry, 2011, 23, 419-424.	1.2	2

#	Article	IF	CITATIONS
91	One-step synthesis of inherently chiral p-tert-butylcalix[4]azacrown. Chinese Chemical Letters, 2009, 20, 640-642.	9.0	1
92	Qualitative Analysis of the Helical Electronic Energy of Inherently Chiral Calix[4]arenes: An Approach to Effectively Assign Their Absolute Configuration. International Journal of Molecular Sciences, 2014, 15, 9844-9858.	4.1	1
93	Performance Improvement for Dyeâ€sensitized Solar Cells with <i>Cone</i> â€calix[4]arene Based Dyes. ChemSusChem, 2015, 8, 197-197.	6.8	0
94	Synthesis of a linearly linked triscalixarene consisting of calix[4]arene units with combined axial chirality and inherent chirality. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 89, 91-104.	1.6	0