
## Luis Garcia-Larrea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7120674/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dissecting neuropathic from poststroke pain: the white matter within. Pain, 2022, 163, 765-778.                                                                                                                                                                                                      | 4.2 | 9         |
| 2  | Transcranial direct current stimulation of 3 cortical targets is no more effective than placebo as treatment for fibromyalgia: a double-blind sham-controlled clinical trial. Pain, 2022, 163, e850-e861.                                                                                            | 4.2 | 16        |
| 3  | Insular dichotomy in the implicit detection of emotions in human faces. Cerebral Cortex, 2022, 32, 4215-4228.                                                                                                                                                                                        | 2.9 | 7         |
| 4  | Stimulation of the motor cerebral cortex in chronic neuropathic pain: the role of electrode localization over motor somatotopy. Journal of Neurosurgical Sciences, 2022, 66, .                                                                                                                       | 0.6 | 4         |
| 5  | Cortical stimulation for chronic pain: from anecdote to evidence. European Journal of Physical and Rehabilitation Medicine, 2022, 58, .                                                                                                                                                              | 2.2 | 7         |
| 6  | Dissecting central post-stroke pain: a controlled symptom-psychophysical characterization. Brain<br>Communications, 2022, 4, fcac090.                                                                                                                                                                | 3.3 | 8         |
| 7  | Intracortical Functional Connectivity Predicts Arousal to Noxious Stimuli during Sleep in Humans.<br>Journal of Neuroscience, 2021, 41, 5115-5123.                                                                                                                                                   | 3.6 | 9         |
| 8  | Human surrogate models of central sensitization: A critical review and practical guide. European<br>Journal of Pain, 2021, 25, 1389-1428.                                                                                                                                                            | 2.8 | 51        |
| 9  | EEG changes reflecting pain: is alpha suppression better than gamma enhancement?. Neurophysiologie<br>Clinique, 2021, 51, 209-218.                                                                                                                                                                   | 2.2 | 12        |
| 10 | IMI2-PainCare-BioPain-RCT3: a randomized, double-blind, placebo-controlled, crossover, multi-center trial in healthy subjects to investigate the effects of lacosamide, pregabalin, and tapentadol on biomarkers of pain processing observed by electroencephalography (EEG). Trials, 2021, 22, 404. | 1.6 | 3         |
| 11 | Theta-burst versus 20ÂHz repetitive transcranial magnetic stimulation in neuropathic pain: A<br>head-to-head comparison. Clinical Neurophysiology, 2021, 132, 2702-2710.                                                                                                                             | 1.5 | 17        |
| 12 | Modulation of the N13 component of the somatosensory evoked potentials in an experimental model of central sensitization in humans. Scientific Reports, 2021, 11, 20838.                                                                                                                             | 3.3 | 5         |
| 13 | How different experimental models of secondary hyperalgesia change the nociceptive flexion reflex.<br>Clinical Neurophysiology, 2021, 132, 2989-2995.                                                                                                                                                | 1.5 | 8         |
| 14 | The N13 spinal component of somatosensory evoked potentials is modulated by heterotopic noxious conditioning stimulation suggesting an involvement of spinal wide dynamic range neurons. Neurophysiologie Clinique, 2021, 51, 517-523.                                                               | 2.2 | 5         |
| 15 | Somatosensory Thalamic Activity Modulation by Posterior Insular Stimulation: Cues to Clinical<br>Application Based on Comparison of Frequencies in a Cat Model. Neuromodulation, 2021, 24, 229-239.                                                                                                  | 0.8 | 6         |
| 16 | Cortical modulation of nociception by galvanic vestibular stimulation: A potential clinical tool?.<br>Brain Stimulation, 2020, 13, 60-68.                                                                                                                                                            | 1.6 | 11        |
| 17 | Pain behavior without pain sensation: an epileptic syndrome of "symbolism for pain�. Pain, 2020, 161,<br>502-508.                                                                                                                                                                                    | 4.2 | 9         |
| 18 | Author response: Insular and anterior cingulate cortex deep stimulation for central neuropathic pain: Disassembling the percept of pain. Neurology, 2020, 94, 721-722.                                                                                                                               | 1.1 | 1         |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A hidden mesencephalic variant of central pain. European Journal of Pain, 2020, 24, 1393-1399.                                                                                                      | 2.8 | 7         |
| 20 | Local sleep spindles in the human thalamus. Journal of Physiology, 2020, 598, 2109-2124.                                                                                                            | 2.9 | 24        |
| 21 | The Modular Organization of Pain Brain Networks: An fMRI Graph Analysis Informed by Intracranial EEG. Cerebral Cortex Communications, 2020, 1, tgaa088.                                             | 1.6 | 13        |
| 22 | Brain activity sustaining the modulation of pain by empathetic comments. Scientific Reports, 2019, 9, 8398.                                                                                         | 3.3 | 19        |
| 23 | At-Home Cortical Stimulation for Neuropathic Pain: a Feasibility Study with Initial Clinical Results.<br>Neurotherapeutics, 2019, 16, 1198-1209.                                                    | 4.4 | 16        |
| 24 | Insular and anterior cingulate cortex deep stimulation for central neuropathic pain. Neurology, 2019, 92, e2165-e2175.                                                                              | 1.1 | 60        |
| 25 | Hyperalgesia when observing pain-related images is a genuine bias in perception and enhances autonomic responses. Scientific Reports, 2019, 9, 15266.                                               | 3.3 | 4         |
| 26 | Theta-burst-induced seizures reported by Lenoir etÂal.: Anterior orÂposterior insular seizures?. Brain<br>Stimulation, 2019, 12, 200-201.                                                           | 1.6 | 11        |
| 27 | Electrophysiology in diagnosis and management of neuropathic pain. Revue Neurologique, 2019, 175, 26-37.                                                                                            | 1.5 | 29        |
| 28 | Randomized doubleâ€blind controlled study of bedtime lowâ€dose amitriptyline in chronic neck pain.<br>European Journal of Pain, 2018, 22, 1180-1187.                                                | 2.8 | 16        |
| 29 | Differential effect of motor cortex stimulation on unit activities in the ventral posterior lateral thalamus in cats. Pain, 2018, 159, 157-167.                                                     | 4.2 | 10        |
| 30 | Pain and consciousness. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 87, 193-199.                                                                                          | 4.8 | 89        |
| 31 | Somatotopic effects of <scp>rTMS</scp> in neuropathic pain? A comparison between stimulation over hand and face motor areas. European Journal of Pain, 2018, 22, 707-715.                           | 2.8 | 45        |
| 32 | Electrical stimulation of the insular cortex as a novel target for the relief of refractory pain: An experimental approach in rodents. Behavioural Brain Research, 2018, 346, 86-95.                | 2.2 | 29        |
| 33 | Insularâ€limbic dissociation to intraâ€epidermal electrical Aδactivation: A comparative study with<br>thermoâ€nociceptive laser stimulation. European Journal of Neuroscience, 2018, 48, 3186-3198. | 2.6 | 6         |
| 34 | Convergence of sensory and limbic noxious input into the anterior insula and the emergence of pain from nociception. Scientific Reports, 2018, 8, 13360.                                            | 3.3 | 42        |
| 35 | Contextual modulation of autonomic pain reactivity. Autonomic Neuroscience: Basic and Clinical, 2018, 212, 28-31.                                                                                   | 2.8 | 5         |
| 36 | Pain syndromes and the parietal lobe. Handbook of Clinical Neurology / Edited By P J Vinken and G W<br>Bruyn, 2018, 151, 207-223.                                                                   | 1.8 | 23        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | How can we explain the frontal presentation of insular lobe epilepsy? The impact of non-linear<br>analysis of insular seizures. Clinical Neurophysiology, 2017, 128, 780-791.                                        | 1.5 | 31        |
| 38 | Evidenceâ€based source modeling of nociceptive cortical responses: A direct comparison of scalp and intracranial activity in humans. Human Brain Mapping, 2017, 38, 6083-6095.                                       | 3.6 | 13        |
| 39 | Motor Cortex Stimulation in Patients Suffering from Chronic Neuropathic Pain: Summary of Expert<br>Meeting and Premeeting Questionnaire, Combined with Literature Review. World Neurosurgery, 2017,<br>108, 254-263. | 1.3 | 19        |
| 40 | Does an observer's empathy influence my pain? Effect of perceived empathetic or unempathetic support on a pain test. European Journal of Neuroscience, 2017, 46, 2629-2637.                                          | 2.6 | 23        |
| 41 | Pain dilates time perception. Scientific Reports, 2017, 7, 15682.                                                                                                                                                    | 3.3 | 29        |
| 42 | Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS).<br>Clinical Neurophysiology, 2017, 128, 56-92.                                                                   | 1.5 | 1,213     |
| 43 | <scp>EAN</scp> guidelines on central neurostimulation therapy in chronic pain conditions. European<br>Journal of Neurology, 2016, 23, 1489-1499.                                                                     | 3.3 | 205       |
| 44 | Twenty years after: Interesting times for scientific editors. European Journal of Pain, 2016, 20, 3-4.                                                                                                               | 2.8 | 0         |
| 45 | Pain networks from the inside: Spatiotemporal analysis of brain responses leading from nociception to conscious perception. Human Brain Mapping, 2016, 37, 4301-4315.                                                | 3.6 | 104       |
| 46 | Thalamic Responses to Nociceptive-Specific Input in Humans: Functional Dichotomies and Thalamo-Cortical Connectivity. Cerebral Cortex, 2016, 26, 2663-2676.                                                          | 2.9 | 24        |
| 47 | Thalamic pain: anatomical and physiological indices of prediction. Brain, 2016, 139, 708-722.                                                                                                                        | 7.6 | 80        |
| 48 | Not an Aspirin: No Evidence for Acute Anti-Nociception to Laser-Evoked Pain After Motor Cortex rTMS<br>in Healthy Humans. Brain Stimulation, 2016, 9, 48-57.                                                         | 1.6 | 21        |
| 49 | Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG. Brain Structure and Function, 2016, 221, 421-431.                                                | 2.3 | 23        |
| 50 | Sleep spindles and human cortical nociception: a surface and intracerebral electrophysiological study. Journal of Physiology, 2015, 593, 4995-5008.                                                                  | 2.9 | 17        |
| 51 | Effects of aging on laser evoked potentials. Muscle and Nerve, 2015, 51, 736-742.                                                                                                                                    | 2.2 | 16        |
| 52 | On the origin of painful somatosensory seizures. Neurology, 2015, 84, 594-601.                                                                                                                                       | 1.1 | 61        |
| 53 | Third International Congress on Epilepsy, Brain, and Mind: Part 2. Epilepsy and Behavior, 2015, 50, 138-159.                                                                                                         | 1.7 | 8         |
| 54 | Filtering out repetitive auditory stimuli in fibromyalgia: A study of <scp>P50</scp> sensory gating.<br>European Journal of Pain, 2015, 19, 576-584.                                                                 | 2.8 | 11        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Asleep but aware?. Brain and Cognition, 2014, 87, 7-15.                                                                                                                                                                  | 1.8  | 12        |
| 56 | P1010: Thalamic pain: anatomical and physiological indices of prediction. Clinical Neurophysiology, 2014, 125, S316-S317.                                                                                                | 1.5  | 1         |
| 57 | Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology, 2014, 125, 2150-2206.                                                                 | 1.5  | 1,647     |
| 58 | ls Life better after motor cortex stimulation for pain control? Results at long-term and their prediction by preoperative rTMS. Pain Physician, 2014, 17, 53-62.                                                         | 0.4  | 50        |
| 59 | Cortical representation of pain in primary sensory-motor areas (S1/M1)-a study using intracortical recordings in humans. Human Brain Mapping, 2013, 34, 2655-2668.                                                       | 3.6  | 87        |
| 60 | Reappraising neuropathic pain in humans—how symptoms help disclose mechanisms. Nature Reviews<br>Neurology, 2013, 9, 572-582.                                                                                            | 10.1 | 178       |
| 61 | Discriminating neurological from psychiatric hypersomnia using the forced awakening test.<br>Neurophysiologie Clinique, 2013, 43, 171-179.                                                                               | 2.2  | 20        |
| 62 | Brain opioid receptor density predicts motor cortex stimulation efficacy for chronic pain. Pain, 2013, 154, 2563-2568.                                                                                                   | 4.2  | 82        |
| 63 | Modulation of laser-evoked potentials and pain perception by transcutaneous electrical nerve<br>stimulation (TENS): A placebo-controlled study in healthy volunteers. Clinical Neurophysiology, 2013,<br>124, 1861-1867. | 1.5  | 19        |
| 64 | Pain matrices and neuropathic pain matrices: A review. Pain, 2013, 154, S29-S43.                                                                                                                                         | 4.2  | 374       |
| 65 | Mechanical allodynia in neuropathic pain. Where are the brain representations located? A positron emission tomography (PET) study. European Journal of Pain, 2013, 17, 1327-1337.                                        | 2.8  | 35        |
| 66 | Changes in Sensory Hand Representation and Pain Thresholds Induced by Motor Cortex Stimulation in Humans. Cerebral Cortex, 2013, 23, 2667-2676.                                                                          | 2.9  | 21        |
| 67 | Objective pain diagnostics: Clinical neurophysiology. Neurophysiologie Clinique, 2012, 42, 187-197.                                                                                                                      | 2.2  | 71        |
| 68 | The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiologie Clinique, 2012, 42, 299-313.                                                                                        | 2.2  | 117       |
| 69 | Enhancing non-noxious perception: Behavioural and neurophysiological correlates of a placebo-like manipulation. Neuroscience, 2012, 217, 96-104.                                                                         | 2.3  | 33        |
| 70 | Insights gained into pain processing from patients with focal brain lesions. Neuroscience Letters, 2012, 520, 188-191.                                                                                                   | 2.1  | 25        |
| 71 | How the pain of others enhances our pain: Searching the cerebral correlates of â€~compassional hyperalgesia'. European Journal of Pain, 2012, 16, 748-759.                                                               | 2.8  | 49        |
| 72 | Filtering the reality: Functional dissociation of lateral and medial pain systems during sleep in<br>humans. Human Brain Mapping, 2012, 33, 2638-2649.                                                                   | 3.6  | 20        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Do we activate specifically somatosensory thin fibres with the concentric planar electrode? A scalp and intracranial EEG study. Pain, 2012, 153, 1244-1252.                                    | 4.2 | 66        |
| 74 | Stereotactic functional mapping of the cat motor cortex. Behavioural Brain Research, 2011, 225, 646-650.                                                                                       | 2.2 | 6         |
| 75 | Does the insula tell our brain that we are in pain?. Pain, 2011, 152, 946-951.                                                                                                                 | 4.2 | 134       |
| 76 | On the importance of placebo timing in rTMS studies for pain relief. Pain, 2011, 152, 1233-1237.                                                                                               | 4.2 | 96        |
| 77 | Cortical representation of the human hand assessed by two levels of highâ€resolution EEG recordings.<br>Human Brain Mapping, 2011, 32, 1894-1904.                                              | 3.6 | 5         |
| 78 | Autonomic pain responses during sleep: A study of heart rate variability. European Journal of Pain,<br>2011, 15, 554-560.                                                                      | 2.8 | 41        |
| 79 | Reply: Operculo-insular pain (parasylvian pain): a distinct central pain syndrome * Not all that glisters<br>is goldnor all that responds a primary sensory area. Brain, 2011, 134, e165-e165. | 7.6 | 1         |
| 80 | Functional exploration for neuropathic pain. Advances and Technical Standards in Neurosurgery, 2011, , 25-63.                                                                                  | 0.5 | 3         |
| 81 | EFNS guidelines on neuropathic pain assessment: revised 2009. European Journal of Neurology, 2010, 17,<br>1010-1018.                                                                           | 3.3 | 442       |
| 82 | Operculo-insular pain (parasylvian pain): a distinct central pain syndrome. Brain, 2010, 133, 2528-2539.                                                                                       | 7.6 | 138       |
| 83 | Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3829-3833.    | 7.1 | 196       |
| 84 | Involuntary Orienting of Attention to Nociceptive Events: Neural and Behavioral Signatures. Journal of Neurophysiology, 2009, 102, 2423-2434.                                                  | 1.8 | 83        |
| 85 | Opioid receptor imaging in man. Douleur Et Analgesie, 2009, 22, 248-260.                                                                                                                       | 0.1 | Ο         |
| 86 | RÃ1e des potentiels évoqués par stimulation laser dans le diagnostic de la douleur centrale. Douleur<br>Et Analgesie, 2008, 21, 93-98.                                                         | 0.1 | 3         |
| 87 | Pain influences hedonic assessment of visual inputs. European Journal of Neuroscience, 2008, 27, 2219-2228.                                                                                    | 2.6 | 24        |
| 88 | Recommendations for the clinical use of somatosensory-evoked potentials. Clinical Neurophysiology, 2008, 119, 1705-1719.                                                                       | 1.5 | 552       |
| 89 | Evoked potentials to nociceptive stimuli delivered by CO2 or Nd:YAP lasers. Clinical Neurophysiology, 2008, 119, 2615-2622.                                                                    | 1.5 | 76        |
| 90 | Laser evoked responses to painful stimulation persist during sleep and predict subsequent arousals.<br>Pain, 2008, 137, 589-599.                                                               | 4.2 | 61        |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Clarifying methods of Truini et al. [Pain 2007;131:343–7] and proposing further evidence supporting the<br>"first come first served―hypothesis: A reply to Mouraux and Iannetti. Pain, 2008, 136, 222-223.                     | 4.2 | 0         |
| 92  | Exploration neurophysiologique de la douleur chronique. Médecine Du Sommeil, 2008, 5, 29-32.                                                                                                                                   | 0.2 | 0         |
| 93  | Parallel Processing of Nociceptive A- $\hat{l'}$ Inputs in SII and Midcingulate Cortex in Humans. Journal of Neuroscience, 2008, 28, 944-952.                                                                                  | 3.6 | 134       |
| 94  | Relief of Dyspnea Involves a Characteristic Brain Activation and a Specific Quality of Sensation.<br>American Journal of Respiratory and Critical Care Medicine, 2008, 177, 440-449.                                           | 5.6 | 75        |
| 95  | Pain relief by rTMS. Neurology, 2008, 71, 833-840.                                                                                                                                                                             | 1.1 | 122       |
| 96  | Motor cortex stimulation for pain control induces changes in the endogenous opioid system.<br>Neurology, 2007, 69, 827-834.                                                                                                    | 1.1 | 249       |
| 97  | Clinical neurophysiology for neurologists: the importance of being trained. Nature Clinical Practice Neurology, 2007, 3, 116-117.                                                                                              | 2.5 | Ο         |
| 98  | Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain, 2007, 127, 183-194.                                                                                                          | 4.2 | 143       |
| 99  | Inhibition of cortical responses to Aδ inputs by a preceding C-related response: Testing the "first come,<br>first served―hypothesis of cortical laser evoked potentials. Pain, 2007, 131, 341-347.                            | 4.2 | 50        |
| 100 | Right frontal event related EEG coherence (ERCoh) differentiates good from bad performers of the Wisconsin Card Sorting Test (WCST). Neurophysiologie Clinique, 2007, 37, 63-75.                                               | 2.2 | 19        |
| 101 | Central representation of the RIII flexion reflex associated with overt motor reaction: An fMRI study.<br>Neurophysiologie Clinique, 2007, 37, 249-259.                                                                        | 2.2 | 27        |
| 102 | Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. NeuroImage, 2007, 34, 310-321.                                                          | 4.2 | 254       |
| 103 | Motor cortex stimulation for neuropathic pain: From phenomenology to mechanisms. NeuroImage, 2007, 37, S71-S79.                                                                                                                | 4.2 | 204       |
| 104 | Human Thalamic and Cortical Activities Assessed by Dimension of Activation and Spectral Edge<br>Frequency During Sleep Wake Cycles. Sleep, 2007, 30, 907-912.                                                                  | 1.1 | 16        |
| 105 | 14 DIAGNOSTIC ROLE OF LASER EVOKED POTENTIALS IN CENTRAL NEUROPATHIC PAIN. European Journal of Pain, 2007, 11, S6-S7.                                                                                                          | 2.8 | Ο         |
| 106 | EFNS guidelines on neurostimulation therapy for neuropathic pain. European Journal of Neurology, 2007, 14, 952-970.                                                                                                            | 3.3 | 601       |
| 107 | Transcranial magnetic stimulation for pain control. Double-blind study of different frequencies<br>against placebo, and correlation with motor cortex stimulation efficacy. Clinical Neurophysiology,<br>2006, 117, 1536-1544. | 1.5 | 216       |
| 108 | On the relation between sensory deafferentation, pain and thalamic activity in Wallenberg's<br>syndrome: A PET-scan study before and after motor cortex stimulation. European Journal of Pain,<br>2006, 10, 677-677.           | 2.8 | 41        |

| #   | Article                                                                                                                                                          | IF                | CITATIONS    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 109 | Subthalamic nucleus stimulation in Parkinson's disease. Journal of Neurology, 2006, 253, 1347-1355.                                                              | 3.6               | 107          |
| 110 | Chapter 30 Evoked potentials in the assessment of pain. Handbook of Clinical Neurology / Edited By P J<br>Vinken and G W Bruyn, 2006, 81, 439-XI.                | 1.8               | 9            |
| 111 | Human SII and Posterior Insula Differently Encode Thermal Laser Stimuli. Cerebral Cortex, 2006, 17, 610-620.                                                     | 2.9               | 174          |
| 112 | Emotional Modulation of Pain: Is It the Sensation or What We Recall?. Journal of Neuroscience, 2006, 26, 11454-11461.                                            | 3.6               | 131          |
| 113 | Learning to react: anticipatory mechanisms in children and adults during a visuospatial attention task. Clinical Neurophysiology, 2005, 116, 1906-1917.          | 1.5               | 29           |
| 114 | O6 - Apport de l'imagerie fonctionnelle dans la compréhension des douleurs chroniques centrales.<br>Douleurs, 2005, 6, 15-16.                                    | 0.0               | 0            |
| 115 | Striatal dopamine during sensorial stimulations: A [18F]FDOPA PET study in human and cats.<br>Neuroscience Letters, 2005, 383, 63-67.                            | 2.1               | 2            |
| 116 | Thalamic thermo-algesic transmission: ventral posterior (VP) complex versus VMpo in the light of a thalamic infarct with central pain. Pain, 2005, 113, 223-232. | 4.2               | 64           |
| 117 | Cognitive modulation of pain-related brain responses. Comments on Seminowicz et al. (Pain) Tj ETQq1 1 0.78431                                                    | 4.rgBT /Ov<br>4.2 | verlock 10 T |
| 118 | Motor cortex stimulation for refractory neuropathic pain: Four year outcome and predictors of efficacy. Pain, 2005, 118, 43-52.                                  | 4.2               | 210          |
| 119 | Chapter 12 Clinical utility of pain - laser evoked potentials. Supplements To Clinical Neurophysiology, 2004, 57, 101-110.                                       | 2.1               | 36           |
| 120 | An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain.<br>Neurology, 2004, 63, 1838-1846.                           | 1.1               | 183          |
| 121 | Human Thalamic Medial Pulvinar Nucleus is not Activated during Paradoxical Sleep. Cerebral Cortex, 2004, 14, 858-862.                                            | 2.9               | 43           |
| 122 | EFNS guidelines on neuropathic pain assessment. European Journal of Neurology, 2004, 11, 153-162.                                                                | 3.3               | 453          |
| 123 | Somatosensory volleys and cortical evoked potentials: â€~First come, first served'?. Pain, 2004, 112, 5-7.                                                       | 4.2               | 39           |
| 124 | Effect of sensory stimulus on striatal dopamine release in humans and cats: a [11C]raclopride PET study. Neuroscience Letters, 2004, 368, 46-51.                 | 2.1               | 6            |
| 125 | Syndrome «Âobsession-dépersonnalisation» d'origine lésionnelle. À propos d'une observation. Annales<br>Medico-Psychologiques, 2004, 162, 384-388.                | 0.4               | 1            |
| 126 | Trouble obsessionnel compulsif secondaire. À propos d'un cas. Annales Medico-Psychologiques, 2004,<br>162, 378-383.                                              | 0.4               | 0            |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Modulation of the N400 potential during auditory phonological/semantic interaction. Cognitive Brain Research, 2003, 17, 36-47.                                                                         | 3.0 | 83        |
| 128 | Event-related potentials during forced awakening: a tool for the study of acute sleep inertia. Journal of Sleep Research, 2003, 12, 189-206.                                                           | 3.2 | 34        |
| 129 | Contribution of attentional and cognitive factors to laser evoked brain potentials. Neurophysiologie<br>Clinique, 2003, 33, 293-301.                                                                   | 2.2 | 186       |
| 130 | Brain generators of laser-evoked potentials: from dipoles to functional significance.<br>Neurophysiologie Clinique, 2003, 33, 279-292.                                                                 | 2.2 | 460       |
| 131 | Predictive Value of Somatosensory Evoked Potentials for Long-lasting Pain Relief after Spinal Cord<br>Stimulation: Practical Use for Patient Selection. Neurosurgery, 2003, 52, 1374-1384.             | 1.1 | 88        |
| 132 | Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain, 2002, 125, 2766-2781.                                                            | 7.6 | 188       |
| 133 | Detection of verbal discordances during sleep. NeuroReport, 2002, 13, 1345-1349.                                                                                                                       | 1.2 | 53        |
| 134 | Role of Operculoinsular Cortices in Human Pain Processing: Converging Evidence from PET, fMRI,<br>Dipole Modeling, and Intracerebral Recordings of Evoked Potentials. NeuroImage, 2002, 17, 1336-1346. | 4.2 | 200       |
| 135 | Cognitive effects of precentral cortical stimulation for pain control: an ERP study. Neurophysiologie<br>Clinique, 2002, 32, 313-325.                                                                  | 2.2 | 17        |
| 136 | On insular responses and laser-evoked potentials. International Journal of Psychophysiology, 2002, 43, 197-198.                                                                                        | 1.0 | 2         |
| 137 | Semantic analysis of auditory input during sleep: studies with event related potentials. International<br>Journal of Psychophysiology, 2002, 46, 243-255.                                              | 1.0 | 95        |
| 138 | Attention shifts and anticipatory mechanisms in hyperactive children: an ERP study using the Posner paradigm. Biological Psychiatry, 2001, 50, 44-57.                                                  | 1.3 | 122       |
| 139 | Responses of the supra-sylvian (SII) cortex in humans to painful and innocuous stimuli. Pain, 2001, 94, 65-73.                                                                                         | 4.2 | 103       |
| 140 | Surgical Procedures for Neuropathic Pain. Neurosurgery Quarterly, 2001, 11, 45-65.                                                                                                                     | 0.1 | 13        |
| 141 | Interference of Cellular Phone Conversations with Visuomotor Tasks: An ERP Study. Journal of Psychophysiology, 2001, 15, 14-21.                                                                        | 0.7 | 24        |
| 142 | PET-Scan and Electrophysiological Assessment of Neuromodulation Procedures for Pain Control. , 2001, , 71-86.                                                                                          |     | 0         |
| 143 | Dissociable ERP profiles for processing rules vs instances in a cognitive sequencing task.<br>NeuroReport, 2000, 11, 1129-1132.                                                                        | 1.2 | 39        |
| 144 | Functional dissociation of the early and late portions of human K-complexes. NeuroReport, 2000, 11, 1637-1640.                                                                                         | 1.2 | 38        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Visuospatial attention and motor reaction in children: An electrophysiological study of the "Posner" paradigm. Psychophysiology, 2000, 37, 231-241.                                                      | 2.4 | 50        |
| 146 | Functional Imaging and Neurophysiological Assessment of Spinal and Brain Therapeutic Modulation in Humans. Archives of Medical Research, 2000, 31, 248-257.                                              | 3.3 | 64        |
| 147 | Parietal and cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain, 2000, 84, 77-87.        | 4.2 | 136       |
| 148 | Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiologie<br>Clinique, 2000, 30, 263-288.                                                                       | 2.2 | 1,898     |
| 149 | Precentral Cortex Stimulation for the Treatment of Central Neuropathic Pain. Stereotactic and Functional Neurosurgery, 1999, 73, 122-125.                                                                | 1.5 | 93        |
| 150 | Haemodynamic brain responses to acute pain in humans. Brain, 1999, 122, 1765-1780.                                                                                                                       | 7.6 | 531       |
| 151 | Timing and characteristics of perceptual attenuation by transcranial stimulation: A study using magnetic cortical stimulation and somatosensory-evoked potentials. Psychophysiology, 1999, 36, 476-483.  | 2.4 | 22        |
| 152 | Sleep/wake abnormalities in patients with periodic leg movements during sleep: Factor analysis on data<br>from 24-h ambulatory polygraphy. Journal of Sleep Research, 1999, 8, 217-223.                  | 3.2 | 45        |
| 153 | Simplified projection of EEG dipole sources onto human brain anatomy. Neurophysiologie Clinique, 1999, 29, 39-52.                                                                                        | 2.2 | 23        |
| 154 | Evoked potentials as a tool for the investigation of human sleep. Sleep Medicine Reviews, 1999, 3, 23-45.                                                                                                | 8.5 | 124       |
| 155 | Hyperalgesia with reduced laser evoked potentials in neuropathic pain. Pain, 1999, 80, 209-214.                                                                                                          | 4.2 | 49        |
| 156 | Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain, 1999, 83, 259-273.                                                                    | 4.2 | 473       |
| 157 | Auditory event-related potentials and clinical scores in unmedicated schizophrenic patients.<br>Psychiatry Research, 1999, 86, 229-238.                                                                  | 3.3 | 56        |
| 158 | On the validity of interblock averaging of P300 in clinical settings. International Journal of Psychophysiology, 1999, 34, 103-112.                                                                      | 1.0 | 20        |
| 159 | The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in<br>Parkinson's disease. Journal of the Neurological Sciences, 1999, 166, 141-151.                     | 0.6 | 148       |
| 160 | A differential brain response to the subject's own name persists during sleep. Clinical<br>Neurophysiology, 1999, 110, 2153-2164.                                                                        | 1.5 | 277       |
| 161 | Topographical reliability of mesio-temporal sources of interictal spikes in temporal lobe epilepsy.<br>Electroencephalography and Clinical Neurophysiology, 1998, 107, 206-212.                          | 0.3 | 62        |
| 162 | P3, Positive slow wave and working memory load: a study on the functional correlates of slow wave activity. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1998, 108, 260-273. | 2.0 | 159       |

| #   | Article                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Multimodal approaches to laser-evoked potential generators. Pain Forum, 1998, 7, 216-220.                                                                                                                                                                                                                  | 1.1 | 20        |
| 164 | Allodynia after lateral-medullary (Wallenberg) infarct. A PET study. Brain, 1998, 121, 345-356.                                                                                                                                                                                                            | 7.6 | 178       |
| 165 | Positron Emission Tomography during Motor Cortex Stimulation for Pain Control. Stereotactic and Functional Neurosurgery, 1997, 68, 141-148.                                                                                                                                                                | 1.5 | 128       |
| 166 | Association and dissociation between laser-evoked potentials and pain perception. NeuroReport, 1997, 8, 3785-3789.                                                                                                                                                                                         | 1.2 | 257       |
| 167 | Apparent asynchrony between interictal electric and magnetic spikes. NeuroReport, 1997, 8, 1071-1076.                                                                                                                                                                                                      | 1.2 | 56        |
| 168 | Clinical use of polysynaptic flexion reflexes in the management of spasticity with intrathecal<br>baclofen. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor<br>Control, 1997, 105, 141-148.                                                                               | 1.4 | 42        |
| 169 | Brain Responses to Detection of Right or Left Somatic Targets are Symmetrical in Unilateral<br>Parkinson's Disease: A Case Against the Concept of †Parkinsonian Neglect'. Cortex, 1996, 32, 679-691.                                                                                                       | 2.4 | 10        |
| 170 | Source propagation of interictal spikes in temporal lobe epilepsy. Brain, 1996, 119, 377-392.                                                                                                                                                                                                              | 7.6 | 91        |
| 171 | Stimulation GABA-A chez le volontaire sain et au cours des épilepsies temporales étudiée par le<br><sup>18</sup> FDG en tomographie d'émission de positons. Journal De Chimie Physique Et De<br>Physico-Chimie Biologique, 1996, 93, 48-52.                                                                | 0.2 | 0         |
| 172 | Brain Processing of Stimulus Deviance During Slow-Wave and Paradoxical Sleep. Journal of Clinical Neurophysiology, 1995, 12, 155-167.                                                                                                                                                                      | 1.7 | 189       |
| 173 | Somatosensory responses during selective spatial attention: The N120-to-N140 trasition.<br>Psychophysiology, 1995, 32, 526-537.                                                                                                                                                                            | 2.4 | 208       |
| 174 | Electrical stimulation of precentral cortical area in the treatment of central pain:<br>electrophysiological and PET study. Pain, 1995, 62, 275-286.                                                                                                                                                       | 4.2 | 238       |
| 175 | Long-Term Clinical, Electrophysiological and Urodynamic Effects of Chronic Intrathecal Baclofen<br>Infusion for Treatment of Spinal Spasticity. Acta Neurochirurgica Supplementum, 1995, 64, 17-25.                                                                                                        | 1.0 | 25        |
| 176 | Effects of GABAA receptors activation on brain glucose metabolism in normal subjects and temporal<br>lobe epilepsy (TLE) patients. A positron emission tomography (PET) study Part I: Brain glucose<br>metabolism is increased after GABAA receptors activation. Epilepsy Research, 1994, 19, 45-54.       | 1.6 | 37        |
| 177 | Effects of GABAA receptors activation on brain glucose metabolism in normal subjects and temporal<br>lobe epilepsy (TLE) patients. A positron emission tomography (PET) study Part II: The focal<br>hypometabolism is reactive to GABAA agonist administration in TLE. Epilepsy Research, 1994, 19, 55-62. | 1.6 | 18        |
| 178 | Flexion reflexes following anterolateral cordotomy in man: dissociation between pain sensation and nociceptive reflex RIII. Pain, 1993, 55, 139-149.                                                                                                                                                       | 4.2 | 41        |
| 179 | Target side and scalp topography of the somatosensory P300. Electroencephalography and Clinical<br>Neurophysiology - Evoked Potentials, 1993, 88, 468-477.                                                                                                                                                 | 2.0 | 51        |
| 180 | The combined monitoring of brain stem auditory evoked potentials and intracranial pressure in coma.<br>A study of 57 patients Journal of Neurology, Neurosurgery and Psychiatry, 1992, 55, 792-798.                                                                                                        | 1.9 | 30        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | High Signal Intensity on T2- Weighted MRI Correlates with Hypoperfusion in Temporal Lobe Epilepsy.<br>Epilepsia, 1992, 33, 28-35.                                                                       | 5.1 | 37        |
| 182 | Revisiting the oddball paradigm. Non-target vs neutral stimuli and the evaluation of ERP attentional effects. Neuropsychologia, 1992, 30, 723-741.                                                      | 1.6 | 223       |
| 183 | Mapping study of somatosensory evoked potentials during selective spatial attention.<br>Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1991, 80, 201-214.                     | 2.0 | 129       |
| 184 | Electrophysiological Assessment of Nociception in Normals and Patients: the Use of Nociceptive Reflexes. , 1990, 41, 102-118.                                                                           |     | 14        |
| 185 | Short latency somatosensory evoked potentials. , 1990, , 221-278.                                                                                                                                       |     | 1         |
| 186 | Nociceptive flexion reflexes during analgesic neurostimulation in man. Pain, 1989, 39, 145-156.                                                                                                         | 4.2 | 64        |
| 187 | Clinical Use of Nociceptive Flexion Reflex Recording in the Evaluation of Functional Neurosurgical<br>Procedures. Acta Neurochirurgica Supplementum, 1989, 46, 53-57.                                   | 1.0 | 22        |
| 188 | Evoked Potential Studies in Friedreich's Ataxia and Progressive Early Onset Cerebellar Ataxia.<br>Canadian Journal of Neurological Sciences, 1988, 15, 292-298.                                         | 0.5 | 24        |
| 189 | Transient drugâ€induced abolition of BAEPs in coma. Neurology, 1988, 38, 1487-1487.                                                                                                                     | 1.1 | 23        |
| 190 | Brain-stem monitoring. I. A system for high-rate sequential BAEP recording and feature extraction.<br>Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1987, 68, 433-445.       | 2.0 | 38        |
| 191 | Brain-stem monitoring. II. Preterminal BAEP changes observed until brain death in deeply comatose patients. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1987, 68, 446-457. | 2.0 | 61        |