Isgouhi Kaloshian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7120417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-canonical nematode endogenous retroviruses resulting from RNA virus glycoprotein gene capture by a metavirus. Journal of General Virology, 2022, 103, .	2.9	1
2	AcDCXR Is a Cowpea Aphid Effector With Putative Roles in Altering Host Immunity and Physiology. Frontiers in Plant Science, 2020, 11, 605.	3.6	11
3	Quantification of Methylglyoxal Levels in Cowpea Leaves in Response to Cowpea Aphid Infestation. Bio-protocol, 2020, 10, e3795.	0.4	3
4	Editorial: Plant-Arthropod Interactions: Effectors and Elicitors of Arthropods and Their Associated Microbes. Frontiers in Plant Science, 2020, 11, 610160.	3.6	0
5	Editorial: Plant-Arthropod Interactions: Effectors and Elicitors of Arthropods and Their Associated Microbes. Frontiers in Plant Science, 2020, 11, 610160.	3.6	0
6	Advances in Plantâ^`Nematode Interactions with Emphasis on the Notorious Nematode Genus <i>Meloidogyne</i> . Phytopathology, 2019, 109, 1988-1996.	2.2	31
7	Aphid effector Me10 interacts with tomato <scp>TFT</scp> 7, a 14â€3â€3 isoform involved in aphid resistance. New Phytologist, 2019, 221, 1518-1528.	7.3	38
8	Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases. BMC Genomics, 2018, 19, 239.	2.8	35
9	Promises and challenges in insect–plant interactions. Entomologia Experimentalis Et Applicata, 2018, 166, 319-343.	1.4	66
10	Sequence analysis of the potato aphid Macrosiphum euphorbiae transcriptome identified two new viruses. PLoS ONE, 2018, 13, e0193239.	2.5	14
11	The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation. Frontiers in Plant Science, 2016, 7, 1142.	3.6	60
12	Rootâ€knot nematodes induce patternâ€ŧriggered immunity in <i>Arabidopsis thaliana</i> roots. New Phytologist, 2016, 211, 276-287.	7.3	73
13	The Synthetic Elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol) Triggers Strong Immunity in Arabidopsis thaliana and Tomato. Scientific Reports, 2016, 6, 29554.	3.3	33
14	Hemipteran and dipteran pests: Effectors and plant host immune regulators. Journal of Integrative Plant Biology, 2016, 58, 350-361.	8.5	84
15	The Conformation of a Plasma Membrane-Localized Somatic Embryogenesis Receptor Kinase Complex Is Altered by a Potato Aphid-Derived Effector. Plant Physiology, 2016, 171, 2211-2222.	4.8	16
16	Plant Immunity: Connecting the Dots Between Microbial and Hemipteran Immune Responses. , 2016, , 217-243.		8
17	The Synthetic Elicitor 2-(5-Bromo-2-Hydroxy-Phenyl)-Thiazolidine-4-Carboxylic Acid Links Plant Immunity to Hormesis. Plant Physiology, 2016, 170, 444-458.	4.8	26
18	A novel virus from Macrosiphum euphorbiae with similarities to members of the family Flaviviridae. Journal of General Virology, 2016, 97, 1261-1271.	2.9	25

Isgouhi Kaloshian

#	Article	IF	CITATIONS
19	Potato Aphid Salivary Proteome: Enhanced Salivation Using Resorcinol and Identification of Aphid Phosphoproteins. Journal of Proteome Research, 2015, 14, 1762-1778.	3.7	60
20	MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum. PLoS Pathogens, 2014, 10, e1004464.	4.7	187
21	GroEL from the endosymbiont <i>Buchnera aphidicola</i> betrays the aphid by triggering plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8919-8924.	7.1	180
22	The Tomato Leucine-Rich Repeat Receptor-Like Kinases SISERK3A and SISERK3B Have Overlapping Functions in Bacterial and Nematode Innate Immunity. PLoS ONE, 2014, 9, e93302.	2.5	55
23	Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. Science, 2013, 342, 118-123.	12.6	1,089
24	In Planta Expression or Delivery of Potato Aphid <i>Macrosiphum euphorbiae</i> Effectors <i>Me10</i> and <i>Me23</i> Enhances Aphid Fecundity. Molecular Plant-Microbe Interactions, 2013, 26, 67-74.	2.6	150
25	Mi-1-Mediated Resistance to Meloidogyne incognita in Tomato May Not Rely on Ethylene but Hormone Perception through ETR3 Participates in Limiting Nematode Infection in a Susceptible Host. PLoS ONE, 2013, 8, e63281.	2.5	20
26	Marker analysis for detection of the Mi-1.2 resistance gene inÂtomatoÂhybrid rootstocks and cultivars. Nematology, 2012, 14, 631-642.	0.6	5
27	High and Low Throughput Screens with Root-knot Nematodes Meloidogyne spp. . Journal of Visualized Experiments, 2012, , .	0.3	25
28	Construction of RNA-Seq Libraries from Large and Microscopic Tissues for the Illumina Sequencing Platform. Methods in Molecular Biology, 2012, 883, 47-57.	0.9	2
29	SIWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta, 2012, 235, 299-309.	3.2	111
30	The receptorâ€like kinase <i>SISERK1</i> is required for <i>Miâ€1â€</i> mediated resistance to potato aphids in tomato. Plant Journal, 2011, 67, 459-471.	5.7	82
31	SEED: efficient clustering of next-generation sequences. Bioinformatics, 2011, 27, 2502-2509.	4.1	54
32	Linked, if Not the Same, <i>Mi-1</i> Homologues Confer Resistance to Tomato Powdery Mildew and Root-Knot Nematodes. Molecular Plant-Microbe Interactions, 2011, 24, 441-450.	2.6	32
33	Disease Resistance-Genes and Defense Responses During Incompatible Interactions. , 2011, , 309-324.		21
34	WRKY72â€type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as geneâ€forâ€gene resistance mediated by the tomato <i>R</i> gene <i>Miâ€1 </i> . Plant Journal, 2010, 63, 22	9-240.	181
35	Ethylene contributes to potato aphid susceptibility in a compatible tomato host. New Phytologist, 2009, 183, 444-456.	7.3	60
36	Tomato Susceptibility to Root-Knot Nematodes Requires an Intact Jasmonic Acid Signaling Pathway. Molecular Plant-Microbe Interactions, 2008, 21, 1205-1214.	2.6	160

#	Article	IF	CITATIONS
37	The Mi-9 Gene from Solanum arcanum Conferring Heat-Stable Resistance to Root-Knot Nematodes Is a Homolog of Mi-1 Â. Plant Physiology, 2007, 143, 1044-1054.	4.8	88
38	The Mi-1-Mediated Pest Resistance Requires Hsp90 and Sgt1 Â. Plant Physiology, 2007, 144, 312-323.	4.8	142
39	Coi1-Dependent Signaling Pathway Is Not Required for Mi-1—Mediated Potato Aphid Resistance. Molecular Plant-Microbe Interactions, 2007, 20, 276-282.	2.6	41
40	Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne) Tj ETQq0 0	0 rgBT /O	verlgck 10 Tf
41	Mi-1-Mediated Aphid Resistance Involves Salicylic Acid and Mitogen-Activated Protein Kinase Signaling Cascades. Molecular Plant-Microbe Interactions, 2006, 19, 655-664.	2.6	209
42	Hemipterans as Plant Pathogens. Annual Review of Phytopathology, 2005, 43, 491-521.	7.8	223
43	GENE-FOR-GENE DISEASE RESISTANCE: BRIDGING INSECT PEST AND PATHOGEN DEFENSE. Journal of Chemical Ecology, 2004, 30, 2419-2438.	1.8	147
44	Rme1 is Necessary for Mi-1-Mediated Resistance and Acts Early in the Resistance Pathway. Molecular Plant-Microbe Interactions, 2004, 17, 55-61.	2.6	45
45	Are roots special? Nematodes have their say. Physiological and Molecular Plant Pathology, 2003, 62, 115-123.	2.5	116
46	Aphid-Induced Defense Responses in Mi-1-Mediated Compatible and Incompatible Tomato Interactions. Molecular Plant-Microbe Interactions, 2003, 16, 699-708.	2.6	219
47	The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid. Plant Journal, 2001, 27, 417-425.	5.7	81
48	<i>Mi</i> -Mediated Resistance Against the Potato Aphid <i>Macrosiphum euphorbiae</i> (Hemiptera:) Tj ETQqO	0 0 rgBT /0 1.4	Overlock 10 T
49	Characterization of LeMir, a Root-Knot Nematode-Induced Gene in Tomato with an Encoded Product Secreted from the Root1. Plant Physiology, 1998, 118, 237-247.	4.8	62
50	The Root Knot Nematode Resistance Gene Mi from Tomato Is a Member of the Leucine Zipper, Nucleotide Binding, Leucine-Rich Repeat Family of Plant Genes. Plant Cell, 1998, 10, 1307-1319.	6.6	703
51	The Root Knot Nematode Resistance Gene Mi from Tomato Is a Member of the Leucine Zipper, Nucleotide Binding, Leucine-Rich Repeat Family of Plant Genes. Plant Cell, 1998, 10, 1307.	6.6	84

52	"Resistance-breaking―nematodes identified in California tomatoes. California Agriculture, 1996, 50, 18-19.	0.8	89	
50	Cowpea aphid resistance in cowpea line CB77 functions primarily through antibiosis and eliminates			

³ phytotoxic symptoms of aphid feeding. Journal of Pest Science, 0, , .