
Craig M Hart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7119284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overlapping but Distinct Sequences Play Roles in the Insulator and Promoter Activities of the <i>Drosophila</i> BEAF-Dependent scs' Insulator. Genetics, 2020, 215, 1003-1012.	2.9	4
2	Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in <i>Drosophila</i> . Genetics, 2020, 215, 89-101.	2.9	10
3	4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin. PLoS ONE, 2018, 13, e0203843.	2.5	11
4	Using a phiC31 "Disintegrase―to make new attP sites in the Drosophila genome at locations showing chromosomal position effects. PLoS ONE, 2018, 13, e0205538.	2.5	3
5	Characterization of the Drosophila BEAF-32A and BEAF-32B Insulator Proteins. PLoS ONE, 2016, 11, e0162906.	2.5	10
6	Do the BEAF insulator proteins regulate genes involved in cell polarity and neoplastic growth?. Developmental Biology, 2014, 389, 121-123.	2.0	3
7	Genome-wide studies of the multi-zinc finger Drosophila Suppressor of Hairy-wing protein in the ovary. Nucleic Acids Research, 2012, 40, 5415-5431.	14.5	47
8	Lack of the Drosophila BEAF insulator proteins alters regulation of genes in the Antennapedia complex. Molecular Genetics and Genomics, 2011, 285, 113-123.	2.1	4
9	Targeted gene replacement by homologous recombination in Drosophila stimulates production of second-site mutations. Fly, 2010, 4, 12-17.	1.7	3
10	Mapping geochemical singularity using multifractal analysis: Application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. Journal of Geochemical Exploration, 2010, 104, 1-11.	3.2	69
11	Genome-Wide Mapping of Boundary Element-Associated Factor (BEAF) Binding Sites in <i>Drosophila melanogaster</i> Links BEAF to Transcription. Molecular and Cellular Biology, 2009, 29, 3556-3568.	2.3	95
12	BEAF Regulates Cell-Cycle Genes through the Controlled Deposition of H3K9 Methylation Marks into Its Conserved Dual-Core Binding Sites. PLoS Biology, 2008, 6, e327.	5.6	60
13	Characterization of BEAF Mutations Isolated by Homologous Recombination in Drosophila. Genetics, 2007, 176, 801-813.	2.9	49
14	A genetic screen supports a broad role for the Drosophila insulator proteins BEAF-32A and BEAF-32B in maintaining patterns of gene expression. Molecular Genetics and Genomics, 2007, 277, 273-286.	2.1	21
15	The Drosophila Boundary Element-Associated Factors BEAF-32A and BEAF-32B Affect Chromatin Structure. Genetics, 2006, 173, 1365-1375.	2.9	59
16	Studies of the Role of the Drosophila scs and scs′ Insulators in Defining Boundaries of a Chromosome Puff. Molecular and Cellular Biology, 2004, 24, 1470-1480.	2.3	36
17	Histone Methyltransferase Activity of a Drosophila Polycomb Group Repressor Complex. Cell, 2002, 111, 197-208.	28.9	1,416
18	Identification of a multicopy chromatin boundary element at the borders of silenced chromosomal domains. Chromosoma, 2002, 110, 519-531.	2.2	47

CRAIG M HART

#	Article	IF	CITATIONS
19	A Drosophila ESC-E(Z) Protein Complex Is Distinct from Other Polycomb Group Complexes and Contains Covalently Modified ESC. Molecular and Cellular Biology, 2000, 20, 3069-3078.	2.3	147
20	Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF. Chromosoma, 1999, 108, 375-383.	2.2	81
21	Facilitation of chromatin dynamics by SARs. Current Opinion in Genetics and Development, 1998, 8, 519-525.	3.3	105
22	Identification of a Class of Chromatin Boundary Elements. Molecular and Cellular Biology, 1998, 18, 7478-7486.	2.3	86
23	The scs′ Boundary Element: Characterization of Boundary Element-Associated Factors. Molecular and Cellular Biology, 1997, 17, 999-1009.	2.3	109
24	Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell, 1995, 81, 879-889.	28.9	303
25	Developmental, hormonal, and pathogenesis-related regulation of the tobacco class I β-1,3-glucanase B promoter. Plant Molecular Biology, 1994, 25, 299-311.	3.9	73
26	Evidence for a role of beta-1,3-glucanase in dicot seed germination. Plant Journal, 1994, 5, 273-278.	5.7	79
27	Deletion Analysis of the Lambda tR1 Termination Region. Journal of Molecular Biology, 1994, 237, 255-265.	4.2	33
28	A 61 bp enhancer element of the tobacco β-1,3-glucanase B gene interacts with one or more regulated nuclear proteins. Plant Molecular Biology, 1993, 21, 121-131.	3.9	95
29	Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Molecular Genetics and Genomics, 1992, 235, 179-188.	2.4	139
30	Transcription antitermination by phage lambda gene Q protein requires a DNA segment spanning the	5.9	47

Transcription antitermination by phage lambda gene Q protein requires a DNA segment spanning the RNA start site.. Genes and Development, 1987, 1, 217-226. 30