
Tauheed Ishrat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7118400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lost in Translation: Neurotrophins Biology and Function in the Neurovascular Unit. Neuroscientist, 2023, 29, 694-714.	3.5	4
2	Compound 21, a Direct AT2R Agonist, Induces IL-10 and Inhibits Inflammation in Mice Following Traumatic Brain Injury. NeuroMolecular Medicine, 2022, 24, 274-278.	3.4	10
3	Repurposing verapamil for prevention of cognitive decline in sporadic Alzheimer's disease. Neural Regeneration Research, 2022, 17, 1018.	3.0	1
4	Acute Hyperglycemia Exacerbates Hemorrhagic Transformation after Embolic Stroke and Reperfusion with tPA: A Possible Role of TXNIP-NLRP3 Inflammasome. Journal of Stroke and Cerebrovascular Diseases, 2022, 31, 106226.	1.6	4
5	A Systematic Review of Inflammatory Cytokine Changes Following Aneurysmal Subarachnoid Hemorrhage in Animal Models and Humans. Translational Stroke Research, 2022, 13, 881-897.	4.2	9
6	Verapamil, a possible repurposed therapeutic candidate for stroke under hyperglycemia. Neural Regeneration Research, 2022, 17, 2418.	3.0	1
7	Direct AT2R Stimulation Slows Post-stroke Cognitive Decline in the 5XFAD Alzheimer's Disease Mice. Molecular Neurobiology, 2022, 59, 4124-4140.	4.0	10
8	Candesartan Effectively Preserves Cognition in Senescence Accelerated Mouse Prone 8 (SAMP8) mice. Journal of Alzheimer's Disease Reports, 2022, 6, 257-269.	2.2	1
9	Contralesional angiotensin type 2 receptor activation contributes to recovery in experimental stroke. Neurochemistry International, 2022, 158, 105375.	3.8	2
10	The NLRP3 inflammasome: a potential therapeutic target for traumatic brain injury. Neural Regeneration Research, 2021, 16, 49.	3.0	36
11	Verapamil Prevents Development of Cognitive Impairment in an Aged Mouse Model of Sporadic Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 3374-3387.	4.0	11
12	Manifestation of renin angiotensin system modulation in traumatic brain injury. Metabolic Brain Disease, 2021, 36, 1079-1086.	2.9	10
13	Verapamil as an Adjunct Therapy to Reduce tPA Toxicity in Hyperglycemic Stroke: Implication of TXNIP/NLRP3 Inflammasome. Molecular Neurobiology, 2021, 58, 3792-3804.	4.0	13
14	Diabetes Mellitus during the Pandemic Covid-19: Prevelance, Pathophysiology, Mechanism, and Management: An updated overview. Current Diabetes Reviews, 2021, 17, .	1.3	2
15	Thioredoxin interacting protein regulates age-associated neuroinflammation. Neurobiology of Disease, 2021, 156, 105399.	4.4	15
16	Endothelial Thioredoxin-Interacting Protein Depletion Reduces Hemorrhagic Transformation in Hyperglycemic Mice after Embolic Stroke and Thrombolytic Therapy. Pharmaceuticals, 2021, 14, 983.	3.8	2
17	ER stress associated TXNIP-NLRP3 inflammasome activation in hippocampus of human Alzheimer's disease. Neurochemistry International, 2021, 148, 105104.	3.8	33
18	Renin-Angiotensin System Alterations in the Human Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2021, 84, 1473-1484.	2.6	8

#	Article	IF	CITATIONS
19	Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response. World Journal of Diabetes, 2021, 12, 1979-1999.	3.5	9
20	HIV Associated Risk Factors for Ischemic Stroke and Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 5306.	4.1	18
21	The Brain AT2R—a Potential Target for Therapy in Alzheimer's Disease and Vascular Cognitive Impairment: a Comprehensive Review of Clinical and Experimental Therapeutics. Molecular Neurobiology, 2020, 57, 3458-3484.	4.0	17
22	Tissue Plasminogen Activator Promotes TXNIP-NLRP3 Inflammasome Activation after Hyperglycemic Stroke in Mice. Molecular Neurobiology, 2020, 57, 2495-2508.	4.0	32
23	Extracellular Vesicles: A Possible Link between HIV and Alzheimer's Disease-Like Pathology in HIV Subjects?. Cells, 2019, 8, 968.	4.1	37
24	Angiotensin II type 2 receptor stimulation with compound 21 improves neurological function after stroke in female rats: a pilot study. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1192-H1201.	3.2	19
25	Thioredoxin-Interacting Protein (TXNIP) Associated NLRP3 Inflammasome Activation in Human Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2019, 68, 255-265.	2.6	77
26	Angiotensin receptor (AT2R) agonist C21 prevents cognitive decline after permanent stroke in aged animals—A randomized double- blind pre-clinical study. Behavioural Brain Research, 2019, 359, 560-569.	2.2	32
27	Dose–response, therapeutic time-window and tPA-combinatorial efficacy of compound 21: A randomized, blinded preclinical trial in a rat model of thromboembolic stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1635-1647.	4.3	21
28	Thioredoxin-Interacting Protein (TXNIP) in Cerebrovascular and Neurodegenerative Diseases: Regulation and Implication. Molecular Neurobiology, 2018, 55, 7900-7920.	4.0	126
29	Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Scientific Reports, 2018, 8, 5971.	3.3	177
30	MCC950, the Selective Inhibitor of Nucleotide Oligomerization Domain-Like Receptor Protein-3 Inflammasome, Protects Mice against Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1294-1303.	3.4	130
31	Role of angiotensin system modulation on progression of cognitive impairment and brain MRI changes in aged hypertensive animals – A randomized double- blind pre-clinical study. Behavioural Brain Research, 2018, 346, 29-40.	2.2	33
32	Metabolic Syndrome, Brain Insulin Resistance, and Alzheimer's Disease: Thioredoxin Interacting Protein (TXNIP) and Inflammasome as Core Amplifiers. Journal of Alzheimer's Disease, 2018, 66, 857-885.	2.6	29
33	Silencing VEGF-B Diminishes the Neuroprotective Effect of Candesartan Treatment After Experimental Focal Cerebral Ischemia. Neurochemical Research, 2018, 43, 1869-1878.	3.3	8
34	RAS modulation prevents progressive cognitive impairment after experimental stroke: a randomized, blinded preclinical trial. Journal of Neuroinflammation, 2018, 15, 229.	7.2	47
35	Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke. Molecular Neurobiology, 2017, 54, 661-670.	4.0	40
36	Mechanisms of acute neurovascular protection with AT1 blockade after stroke: Effect of prestroke hypertension. PLoS ONE, 2017, 12, e0178867.	2.5	7

#	Article	IF	CITATIONS
37	Progesterone improves long-term functional and histological outcomes after permanent stroke in older rats. Behavioural Brain Research, 2016, 305, 46-56.	2.2	22
38	MyD88 contributes to neuroinflammatory responses induced by cerebral ischemia/reperfusion in mice. Biochemical and Biophysical Research Communications, 2016, 480, 69-74.	2.1	28
39	Abstract WP101: Involvement of the Contralesional Angiotensin Type 2 Receptor in Compound 21 Mediated Functional Recovery After Stroke. Stroke, 2016, 47, .	2.0	Ο
40	Compound 21 is pro-angiogenic in the brain and results in sustained recovery after ischemic stroke. Journal of Hypertension, 2015, 33, 170-180.	0.5	57
41	Sequential Therapy with Minocycline and Candesartan Improves Long-Term Recovery After Experimental Stroke. Translational Stroke Research, 2015, 6, 309-322.	4.2	31
42	Low-Dose Candesartan Enhances Molecular Mediators of Neuroplasticity and Subsequent Functional Recovery After Ischemic Stroke in Rats. Molecular Neurobiology, 2015, 51, 1542-1553.	4.0	49
43	Bacopa monniera ameliorates cognitive impairment and neurodegeneration induced by intracerebroventricular-streptozotocin in rat: behavioral, biochemical, immunohistochemical and histopathological evidences. Metabolic Brain Disease, 2015, 30, 115-127.	2.9	30
44	Role of Inflammasome Activation in the Pathophysiology of Vascular Diseases of the Neurovascular Unit. Antioxidants and Redox Signaling, 2015, 22, 1188-1206.	5.4	66
45	Thioredoxin-Interacting Protein: a Novel Target for Neuroprotection in Experimental Thromboembolic Stroke in Mice. Molecular Neurobiology, 2015, 51, 766-778.	4.0	92
46	Role of Matrix Metalloproteinase Activity in the Neurovascular Protective Effects of Angiotensin Antagonism. Stroke Research and Treatment, 2014, 2014, 1-9.	0.8	4
47	Candesartan Induces a Prolonged Proangiogenic Effect and Augments Endothelium-Mediated Neuroprotection after Oxygen and Glucose Deprivation: Role of Vascular Endothelial Growth Factors A and B. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 444-457.	2.5	27
48	Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke. NeuroToxicology, 2014, 45, 100-110.	3.0	78
49	Progesterone in experimental permanent stroke: a dose-response and therapeutic time-window study. Brain, 2014, 137, 486-502.	7.6	73
50	Recommendations for Preclinical Research in Hemorrhagic Transformation. Translational Stroke Research, 2013, 4, 322-327.	4.2	31
51	Anti-apoptotic and Anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson's Rat model. Journal of Nutritional Biochemistry, 2013, 24, 680-687.	4.2	109
52	Combination treatment with progesterone and vitamin D hormone is more effective than monotherapy in ischemic stroke: The role of BDNF/TrkB/Erk1/2 signaling in neuroprotection. Neuropharmacology, 2013, 67, 78-87.	4.1	76
53	Modulatory effects of Pycnogenol® in a rat model of insulin-dependent diabetes mellitus: biochemical, histological, and immunohistochemical evidences. Protoplasma, 2013, 250, 347-360.	2.1	19
54	Candesartan Reduces the Hemorrhage Associated with Delayed Tissue Plasminogen Activator Treatment in Rat Embolic Stroke. Neurochemical Research, 2013, 38, 2668-2677.	3.3	28

#	Article	IF	CITATIONS
55	Vascular Protection to Increase the Safety of Tissue Plasminogen Activator for Stroke. Current Pharmaceutical Design, 2012, 18, 3677-3684.	1.9	20
56	Neuroprotective efficacy of Nardostachys jatamansi and crocetin in conjunction with selenium in cognitive impairment. Neurological Sciences, 2012, 33, 1011-1020.	1.9	47
57	Naringenin ameliorates Alzheimer's disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochemistry International, 2012, 61, 1081-1093.	3.8	137
58	Response to: do pregnant women have improved outcomes after traumatic brain injury?. American Journal of Surgery, 2012, 204, 803-804.	1.8	3
59	Edaravone ameliorates oxidative stress associated cholinergic dysfunction and limits apoptotic response following focal cerebral ischemia in rat. Molecular and Cellular Biochemistry, 2012, 367, 215-225.	3.1	36
60	Progesterone Inhibits the Growth of Human Neuroblastoma: In Vitro and In Vivo Evidence. Molecular Medicine, 2011, 17, 1084-1094.	4.4	24
61	Neuroprotective effects of curcumin on 6-hydroxydopamine-induced Parkinsonism in rats: Behavioral, neurochemical and immunohistochemical studies. Brain Research, 2011, 1368, 254-263.	2.2	72
62	Quercetin Protects Against Oxidative Stress Associated Damages in a Rat Model of Transient Focal Cerebral Ischemia and Reperfusion. Neurochemical Research, 2011, 36, 1360-1371.	3.3	92
63	Synergistic Effect of Selenium and Melatonin on Neuroprotection in Cerebral Ischemia in Rats. Biological Trace Element Research, 2011, 139, 81-96.	3.5	33
64	Neuroprotection Offered by Majun Khadar, a Traditional Unani Medicine, during Cerebral Ischemic Damage in Rats. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-9.	1.2	10
65	Amelioration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced behavioural dysfunction and oxidative stress by Pycnogenol in mouse model of Parkinson's disease. Behavioural Pharmacology, 2010, 21, 563-571.	1.7	21
66	Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson's disease. Brain Research, 2010, 1328, 139-151.	2.2	232
67	Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats. Chemico-Biological Interactions, 2010, 183, 255-263.	4.0	67
68	Progesterone with Vitamin D Affords Better Neuroprotection against Excitotoxicity in Cultured Cortical Neurons than Progesterone Alone. Molecular Medicine, 2009, 15, 328-336.	4.4	75
69	Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Research, 2009, 1250, 242-253.	2.2	207
70	Effects of progesterone administration on infarct volume and functional deficits following permanent focal cerebral ischemia in rats. Brain Research, 2009, 1257, 94-101.	2.2	106
71	Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer's type. Brain Research, 2009, 1281, 117-127.	2.2	179
72	Rutin protects the neural damage induced by transient focal ischemia in rats. Brain Research, 2009, 1292, 123-135.	2.2	176

#	Article	IF	CITATIONS
73	The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice. Biochemical and Biophysical Research Communications, 2009, 390, 678-683.	2.1	35
74	Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer's type (SDAT)â~†. European Neuropsychopharmacology, 2009, 19, 636-647.	0.7	196
75	Effects of Pycnogenol and vitamin E on cognitive deficits and oxidative damage induced by intracerebroventricular streptozotocin in rats. Behavioural Pharmacology, 2009, 20, 567-575.	1.7	44
76	Selenium plays a modulatory role against cerebral ischemia-induced neuronal damage in rat hippocampus. Brain Research, 2007, 1147, 218-225.	2.2	71
77	Behavioral and Histologic Neuroprotection of Aqueous Garlic Extract After Reversible Focal Cerebral Ischemia. Journal of Medicinal Food, 2006, 9, 537-544.	1.5	41
78	Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behavioural Brain Research, 2006, 171, 9-16.	2.2	175
79	Effect of dietary sesame oil as antioxidant on brain hippocampus of rat in focal cerebral ischemia. Life Sciences, 2006, 79, 1921-1928.	4.3	63
80	Prevention of cognitive impairments and neurodegeneration by Khamira Abresham Hakim Arshad Wala. Journal of Ethnopharmacology, 2006, 108, 68-73.	4.1	30
81	Attenuation by Nardostachys jatamansi of 6-hydroxydopamine-induced parkinsonism in rats: behavioral, neurochemical, and immunohistochemical studies. Pharmacology Biochemistry and Behavior, 2006, 83, 150-160.	2.9	73
82	Effect of Saffron (Crocus sativus) on Neurobehavioral and Neurochemical Changes in Cerebral Ischemia in Rats. Journal of Medicinal Food, 2006, 9, 246-253.	1.5	92
83	Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. Journal of Neurochemistry, 2005, 93, 94-104.	3.9	137
84	Selenium Protects Cerebral Ischemia in Rat Brain Mitochondria. Biological Trace Element Research, 2004, 101, 73-86.	3.5	85