Stan D Wullschleger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7118352/publications.pdf

Version: 2024-02-01

229 papers

16,683 citations

69 h-index 120 g-index

232 all docs

232 docs citations

times ranked

232

16022 citing authors

#	Article	lF	Citations
1	In search of the missing carbon sink: a model of terrestrial biospheric response to land-use change and atmospheric CO ₂ . Tellus, Series B: Chemical and Physical Meteorology, 2022, 47, 501.	0.8	23
2	Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil. Environmental Pollution, 2022, 299, 118878.	3.7	8
3	Range shifts in a foundation sedge potentially induce large Arctic ecosystem carbon losses and gains. Environmental Research Letters, 2022, 17, 045024.	2.2	5
4	High nitrate variability on an Alaskan permafrost hillslope dominated by alder shrubs. Cryosphere, 2022, 16, 1889-1901.	1.5	3
5	Increased Arctic NO3â° Availability as a Hydrogeomorphic Consequence of Permafrost Degradation and Landscape Drying. Nitrogen, 2022, 3, 314-332.	0.6	1
6	Quantifying pH buffering capacity in acidic, organic-rich Arctic soils: Measurable proxies and implications for soil carbon degradation. Geoderma, 2022, 424, 116003.	2.3	7
7	Untargeted Exometabolomics Provides a Powerful Approach to Investigate Biogeochemical Hotspots with Vegetation and Polygon Type in Arctic Tundra Soils. Soil Systems, 2021, 5, 10.	1.0	1
8	Divergent speciesâ€specific impacts of whole ecosystem warming and elevated CO 2 on vegetation water relations in an ombrotrophic peatland. Global Change Biology, 2021, 27, 1820-1835.	4.2	10
9	A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.	2.3	22
10	Warming induces divergent stomatal dynamics in coâ€occurring boreal trees. Global Change Biology, 2021, 27, 3079-3094.	4.2	9
11	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	3.7	65
12	Development of observation-based global multilayer soil moisture products for 1970 to 2016. Earth System Science Data, 2021, 13, 4385-4405.	3.7	9
13	Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal. Biodesign Research, 2021, 2021, .	0.8	5
14	Anaerobic respiration pathways and response to increased substrate availability of Arctic wetland soils. Environmental Sciences: Processes and Impacts, 2020, 22, 2070-2083.	1.7	6
15	Influences of Hillslope Biogeochemistry on Anaerobic Soil Organic Matter Decomposition in a Tundra Watershed. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005512.	1.3	4
16	Understanding the relative importance of vertical and horizontal flow in ice-wedge polygons. Hydrology and Earth System Sciences, 2020, 24, 1109-1129.	1.9	9
17	Temporal, Spatial, and Temperature Controls on Organic Carbon Mineralization and Methanogenesis in Arctic High-Centered Polygon Soils. Frontiers in Microbiology, 2020, 11, 616518.	1.5	3
18	Iron and iron-bound phosphate accumulate in surface soils of ice-wedge polygons in arctic tundra. Environmental Sciences: Processes and Impacts, 2020, 22, 1475-1490.	1.7	8

#	Article	IF	CITATIONS
19	The Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction: Prospects and Challenges. Biodesign Research, 2020, 2020, .	0.8	24
20	Plant Biosystems Design for a Carbon-Neutral Bioeconomy. Biodesign Research, 2020, 2020, .	0.8	5
21	Plant Biosystems Design Research Roadmap 1.0. Biodesign Research, 2020, 2020, .	0.8	16
22	Temperature sensitivity of mineral-enzyme interactions on the hydrolysis of cellobiose and indican by \hat{l}^2 -glucosidase. Science of the Total Environment, 2019, 686, 1194-1201.	3.9	20
23	Alder Distribution and Expansion Across a Tundra Hillslope: Implications for Local N Cycling. Frontiers in Plant Science, 2019, 10, 1099.	1.7	37
24	Iron (Oxyhydr)Oxides Serve as Phosphate Traps in Tundra and Boreal Peat Soils. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 227-246.	1.3	38
25	Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiologyâ€. Tree Physiology, 2019, 39, 556-572.	1.4	8
26	Evaluation of an untargeted nano-liquid chromatography-mass spectrometry approach to expand coverage of low molecular weight dissolved organic matter in Arctic soil. Scientific Reports, 2019, 9, 5810.	1.6	16
27	Terrestrial biosphere models may overestimate Arctic <scp>CO</scp> ₂ assimilation if they do not account for decreased quantum yield and convexity at low temperature. New Phytologist, 2019, 223, 167-179.	3.5	14
28	Influences of nitrogen fertilization and climate regime on the above-ground biomass yields of miscanthus and switchgrass: A meta-analysis. Renewable and Sustainable Energy Reviews, 2019, 108, 303-311.	8.2	31
29	Modeling anaerobic soil organic carbon decomposition in Arctic polygon tundra: insights into soil geochemical influences on carbon mineralization. Biogeosciences, 2019, 16, 663-680.	1.3	21
30	Mechanistic Modeling of Microtopographic Impacts on CO ₂ and CH ₄ Fluxes in an Alaskan Tundra Ecosystem Using the CLMâ€Microbe Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 4288-4304.	1.3	22
31	Photosynthetic and Respiratory Responses of Two Bog Shrub Species to Whole Ecosystem Warming and Elevated CO2 at the Boreal-Temperate Ecotone. Frontiers in Forests and Global Change, 2019, 2, .	1.0	9
32	Stimulation of anaerobic organic matter decomposition by subsurface organic N addition in tundra soils. Soil Biology and Biochemistry, 2019, 130, 195-204.	4.2	13
33	Characterization of iron oxide nanoparticle films at the air–water interface in Arctic tundra waters. Science of the Total Environment, 2018, 633, 1460-1468.	3.9	8
34	Missing pieces to modeling the Arctic-Boreal puzzle. Environmental Research Letters, 2018, 13, 020202.	2.2	61
35	Molecular Insights into Arctic Soil Organic Matter Degradation under Warming. Environmental Science &	4.6	74
36	Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra. Biogeosciences, 2018, 15, 6621-6635.	1.3	33

#	Article	IF	CITATIONS
37	Guidelines and considerations for designing field experiments simulating precipitation extremes in forest ecosystems. Methods in Ecology and Evolution, 2018, 9, 2310-2325.	2.2	24
38	Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave. BMC Genomics, 2018, 19, 588.	1.2	64
39	Evaporation dominates evapotranspiration on Alaska's Arctic Coastal Plain. Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	13
40	Biophysical drivers of seasonal variability in <i>Sphagnum</i> gross primary production in a northern temperate bog. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1078-1097.	1.3	22
41	Large CO ₂ and CH ₄ emissions from polygonal tundra during spring thaw in northern Alaska. Geophysical Research Letters, 2017, 44, 504-513.	1.5	53
42	Evapotranspiration across plant types and geomorphological units in polygonal Arctic tundra. Journal of Hydrology, 2017, 553, 816-825.	2.3	15
43	Terrestrial biosphere models underestimate photosynthetic capacity and CO ₂ assimilation in the Arctic. New Phytologist, 2017, 216, 1090-1103.	3.5	59
44	Trait covariance: the functional warp of plant diversity?. New Phytologist, 2017, 216, 976-980.	3.5	22
45	Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment. Frontiers in Microbiology, 2017, 8, 1741.	1.5	26
46	Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences, 2016, 13, 3735-3755.	1.3	102
47	Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets. Remote Sensing, 2016, 8, 733.	1.8	34
48	A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geoscientific Model Development, 2016, 9, 587-606.	1.3	88
49	Warming increases methylmercury production in an Arctic soil. Environmental Pollution, 2016, 214, 504-509.	3.7	60
50	Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes. Hydrological Processes, 2016, 30, 4972-4986.	1.1	68
51	Effects of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil. Soil Biology and Biochemistry, 2016, 95, 202-211.	4.2	57
52	Interdisciplinary research in climate and energy sciences. Wiley Interdisciplinary Reviews: Energy and Environment, 2016, 5, 49-56.	1.9	18
53	Scaling nitrogen and carbon interactions: what are the consequences of biological buffering?. Ecology and Evolution, 2015, 5, 2839-2850.	0.8	4
54	A roadmap for research on crassulacean acid metabolism (<scp>CAM</scp>) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytologist, 2015, 207, 491-504.	3.5	211

#	Article	IF	Citations
55	Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2345-2359.	1.3	41
56	Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes. Global Biogeochemical Cycles, 2015, 29, 1893-1910.	1.9	30
57	A microbial functional groupâ€based module for simulating methane production and consumption: Application to an incubated permafrost soil. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1315-1333.	1.3	56
58	Geochemical drivers of organic matter decomposition in arctic tundra soils. Biogeochemistry, 2015, 126, 397-414.	1.7	53
59	Measuring diurnal cycles of evapotranspiration in the Arctic with an automated chamber system. Ecohydrology, 2015, 8, 652-659.	1.1	7
60	Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground. Geophysical Research Letters, 2015, 42, 1808-1817.	1.5	44
61	Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1000-1017.	1.3	22
62	Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science, 2015, 6, 563.	1.7	243
63	Use of a metadata documentation and search tool for large data volumes: The NGEE arctic example. , 2015, , .		O
64	Development of mpi_EPIC model for global agroecosystem modeling. Computers and Electronics in Agriculture, 2015, 111, 48-54.	3.7	6
65	Stoichiometry and temperature sensitivity of methanogenesis and <scp>CO</scp> ₂ production from saturated polygonal tundra in Barrow, Alaska. Global Change Biology, 2015, 21, 722-737.	4.2	68
66	The unseen iceberg: plant roots in arctic tundra. New Phytologist, 2015, 205, 34-58.	3.5	260
67	Globalâ€scale environmental control of plant photosynthetic capacity. Ecological Applications, 2015, 25, 2349-2365.	1.8	95
68	Genomics in a changing arctic: critical questions await the molecular ecologist. Molecular Ecology, 2015, 24, 2301-2309.	2.0	10
69	Leaf respiration (<i>GlobResp</i>) – global trait database supports Earth System Models. New Phytologist, 2015, 206, 483-485.	3.5	3
70	Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature <i>Picea mariana</i> trees. Annals of Botany, 2015, 116, 821-832.	1.4	33
71	Climateâ€resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (<scp>CAM</scp>) as a mitigation strategy. Plant, Cell and Environment, 2015, 38, 1833-1849.	2.8	59
72	Root structural and functional dynamics in terrestrial biosphere models – evaluation and recommendations. New Phytologist, 2015, 205, 59-78.	3.5	214

#	Article	IF	Citations
73	<scp><i>S</i></scp> <i>phagnum</i> physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell and Environment, 2015, 38, 1737-1751.	2.8	60
74	Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry. PLoS ONE, 2015, 10, e0130557.	1.1	78
75	The impacts of recent permafrost thaw on land–atmosphere greenhouse gas exchange. Environmental Research Letters, 2014, 9, 045005.	2.2	74
76	Global simulation of bioenergy crop productivity: analytical framework and case study for switchgrass. GCB Bioenergy, 2014, 6, 14-25.	2.5	22
77	The relationship of leaf photosynthetic traits – <i>V</i> _{cmax} and <i>J</i> _{max} – to leaf nitrogen, leaf phosphorus, and specific leaf area: a metaâ€analysis and modeling study. Ecology and Evolution, 2014, 4, 3218-3235.	0.8	338
78	Differential priming of soil carbon driven by soil depth and root impacts on carbon availability. Soil Biology and Biochemistry, 2014, 69, 147-156.	4.2	105
79	Functional Genomics of Drought Tolerance in Bioenergy Crops. Critical Reviews in Plant Sciences, 2014, 33, 205-224.	2.7	25
80	Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Annals of Botany, 2014, 114, 1-16.	1.4	240
81	Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and <i>NDVI</i> data sets. Water Resources Research, 2014, 50, 6339-6357.	1.7	51
82	Investigation of laser-induced breakdown spectroscopy and multivariate analysis for differentiating inorganic and organic C in a variety of soils. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 87, 100-107.	1.5	32
83	Carbon sequestration via wood harvest and storage: An assessment of its harvest potential. Climatic Change, 2013, 118, 245-257.	1.7	24
84	Extending the Arabidopsis flowering paradigm to a mass flowering phenomenon in the tropics. Molecular Ecology, 2013, 22, 4603-4605.	2.0	1
85	Variation in root architecture among switchgrass cultivars impacts root decomposition rates. Soil Biology and Biochemistry, 2013, 58, 198-206.	4.2	77
86	Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets. Hydrogeology Journal, 2013, 21, 149-169.	0.9	127
87	Revisiting the sequencing of the first tree genome: Populus trichocarpa. Tree Physiology, 2013, 33, 357-364.	1.4	61
88	Remote Monitoring of Freeze–Thaw Transitions in Arctic Soils Using the Complex Resistivity Method. Vadose Zone Journal, 2013, 12, 1-13.	1.3	18
89	Carbon Sequestration. , 2013, , 415-455.		3
90	From systems biology to photosynthesis and whole-plant physiology. Plant Signaling and Behavior, 2012, 7, 260-262.	1.2	13

#	Article	IF	Citations
91	Initial characterization of shade avoidance response suggests functional diversity between <i>Populus</i> phytochrome B genes. New Phytologist, 2012, 196, 726-737.	3.5	25
92	Modeling the molecular and climatic controls on flowering. New Phytologist, 2012, 194, 599-601.	3.5	6
93	Integrating empirical–modeling approaches to improve understanding of terrestrial ecology processes. New Phytologist, 2012, 195, 523-525.	3.5	6
94	Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME Journal, 2012, 6, 709-712.	4.4	153
95	Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics. PLoS ONE, 2012, 7, e37914.	1.1	99
96	Bioenergy crop models: descriptions, data requirements, and future challenges. GCB Bioenergy, 2012, 4, 620-633.	2.5	79
97	Crop Physiology. Green Energy and Technology, 2012, , 55-86.	0.4	12
98	Planning the Next Generation of Arctic Ecosystem Experiments. Eos, 2011, 92, 145-145.	0.1	10
99	Comparative physiology and transcriptional networks underlying the heat shock response in <i>Populus trichocarpa</i> , <i>Arabidopsis thaliana</i> and <i>Glycine max</i> . Plant, Cell and Environment, 2011, 34, 1488-1506.	2.8	71
100	A method for experimental heating of intact soil profiles for application to climate change experiments. Global Change Biology, 2011, 17, 1083-1096.	4.2	42
101	Importance of feedback loops between soil inorganic nitrogen and microbial communities in the heterotrophic soil respiration response to global warming. Nature Reviews Microbiology, 2011, 9, 222-222.	13.6	13
102	Response of "Alamo―switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA. Agriculture, Ecosystems and Environment, 2011, 140, 289-297.	2.5	42
103	Genomic aspects of research involving polyploid plants. Plant Cell, Tissue and Organ Culture, 2011, 104, 387-397.	1.2	45
104	Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO ₂ . Ecohydrology, 2011, 4, 196-210.	1.1	96
105	Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass and Bioenergy, 2011, 35, 214-226.	2.9	48
106	A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes. Tree Physiology, 2011, 31, 669-679.	1.4	60
107	Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiology, 2011, 31, 117-130.	1.4	152
108	Environmental controls on water use efficiency during severe drought in an Ozark Forest in Missouri, USA. Global Change Biology, 2010, 16, 2252-2271.	4.2	71

#	Article	IF	CITATIONS
109	An Improved Approach for Mapping Quantitative Trait Loci in a Pseudo-Testcross: Revisiting a Poplar Mapping Study. Bioinformatics and Biology Insights, 2010, 4, BBI.S4153.	1.0	18
110	Intra-annual changes in biomass, carbon, and nitrogen dynamics at 4-year old switchgrass field trials in west Tennessee, USA \hat{a}^- †. Agriculture, Ecosystems and Environment, 2010, 136, 177-184.	2.5	72
111	Reliable estimation of biochemical parameters from C ₃ leaf photosynthesis–intercellular carbon dioxide response curves. Plant, Cell and Environment, 2010, 33, 1852-1874.	2.8	180
112	Climate Change: A Controlled Experiment. Scientific American, 2010, 302, 78-83.	1.0	7
113	Differential Detection of Genetic Loci Underlying Stem and Root Lignin Content in Populus. PLoS ONE, 2010, 5, e14021.	1.1	20
114	Biomass Production in Switchgrass across the United States: Database Description and Determinants of Yield. Agronomy Journal, 2010, 102, 1158-1168.	0.9	232
115	Novel Multivariate Analysis for Soil Carbon Measurements Using Laserâ€Induced Breakdown Spectroscopy. Soil Science Society of America Journal, 2010, 74, 87-93.	1.2	67
116	Phytosequestration: Carbon Biosequestration by Plants and the Prospects of Genetic Engineering. BioScience, 2010, 60, 685-696.	2.2	149
117	A comment on "Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality―by Aronson and McNulty. Agricultural and Forest Meteorology, 2010, 150, 497-498.	1.9	56
118	Empirical geographic modeling of switchgrass yields in the United States. GCB Bioenergy, 2010, 2, 248-257.	2.5	63
119	<i>Populus</i> Responses to Edaphic and Climatic Cues: Emerging Evidence from Systems Biology Research. Critical Reviews in Plant Sciences, 2009, 28, 368-374.	2.7	14
120	Gene expression profiling: opening the black box of plant ecosystem responses to global change. Global Change Biology, 2009, 15, 1201-1213.	4.2	35
121	Microsatellite primer resource for <i>Populus</i> developed from the mapped sequence scaffolds of the Nisqually†genome. New Phytologist, 2009, 181, 498-503.	3.5	34
122	Poplar Genomics: State of the Science. Critical Reviews in Plant Sciences, 2009, 28, 285-308.	2.7	42
123	Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Systems Biology, 2008, 2, 16.	3.0	102
124	Effects of harvest management practices on forest biomass and soil carbon in eucalypt forests in New South Wales, Australia: Simulations with the forest succession model LINKAGES. Forest Ecology and Management, 2008, 255, 2407-2415.	1.4	20
125	Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature. Journal of Geophysical Research, 2007, 112 , .	3.3	45
126	Biases of CO ₂ storage in eddy flux measurements in a forest pertinent to vertical configurations of a profile system and CO ₂ density averaging. Journal of Geophysical Research, 2007, 112, .	3.3	34

#	Article	IF	Citations
127	Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability. Biomass and Bioenergy, 2007, 31, 793-801.	2.9	21
128	High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1426-1432.	1.5	91
129	Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Appalachian forest in the USA. New Phytologist, 2007, 174, 125-136.	3.5	86
130	Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA. New Phytologist, 2007, 174, 109-124.	3.5	109
131	Functional genomics and ecology – a tale of two scales. New Phytologist, 2007, 176, 735-739.	3.5	8
132	Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. Journal of Geophysical Research, 2006, 111 , .	3.3	191
133	Belowground Responses to Atmospheric Carbon Dioxide in Forests. , 2006, , 397-418.		11
134	Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: evidence from a long-term field manipulation study. Global Change Biology, 2006, 12, 97-109.	4.2	87
135	ATMOSPHERE: Plant Respiration in a Warmer World. Science, 2006, 312, 536-537.	6.0	137
136	Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biology, 2005, 11, 1402-1423.	4.2	83
137	Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 1179-1185.	1.5	139
138	Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar. Canadian Journal of Forest Research, 2005, 35, 1779-1789.	0.8	134
139	Elemental Analysis of Environmental and Biological Samples Using Laserâ€Induced Breakdown Spectroscopy and Pulsed Raman Spectroscopy. Journal of Dispersion Science and Technology, 2005, 25, 687-694.	1.3	23
140	Modern and Future Forests in a Changing Atmosphere. , 2005, , 394-414.		3
141	OAK FOREST CARBON AND WATER SIMULATIONS: MODEL INTERCOMPARISONS AND EVALUATIONS AGAINST INDEPENDENT DATA. Ecological Monographs, 2004, 74, 443-489.	2.4	225
142	Application of Emerging Tools and Techniques for Measuring Carbon and Microbial Communities in Reclaimed Mine Soils. Environmental Management, 2004, 33, S518.	1.2	6
143	High-resolution analysis of stem increment and sap flow for loblolly pine trees attacked by southern pine beetle. Canadian Journal of Forest Research, 2004, 34, 2387-2393.	0.8	32
144	Prospects for enhancing carbon sequestration and reclamation of degraded lands with fossil-fuel combustion by-products. Journal of Environmental Management, 2004, 8, 425-438.	1.7	72

#	Article	IF	CITATIONS
145	Emerging Use of Gene Expression Microarrays in Plant Physiology. Comparative and Functional Genomics, 2003, 4, 216-224.	2.0	17
146	On the relationship between stomatal characters and atmospheric CO2. Geophysical Research Letters, 2003, 30, .	1.5	53
147	Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils. Applied Optics, 2003, 42, 2072.	2.1	91
148	Diurnal and seasonal changes in stem increment and water use by yellow poplar trees in response to environmental stress. Tree Physiology, 2003, 23, 1125-1136.	1.4	40
149	Assessment of genetic similarity among 'Alamo' switchgrass seed lots using RAPD markers. Seed Science and Technology, 2003, 31, 681-689.	0.6	3
150	Forest Water Use and the Influence of Precipitation Change. Ecological Studies, 2003, , 363-377.	0.4	5
151	Estimating the Net Primary and Net Ecosystem Production of a Southeastern Upland Quercus Forest from an 8-Year Biometric Record. Ecological Studies, 2003, , 378-395.	0.4	12
152	Simulated Patterns of Forest Succession and Productivity as a Consequence of Altered Precipitation. Ecological Studies, 2003, , 433-446.	0.4	14
153	Sensitivity of Sapling and Mature-Tree Water Use to Altered Precipitation Regimes. Ecological Studies, 2003, , 87-99.	0.4	3
154	Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tree Physiology, 2002, 22, 1157-1166.	1.4	87
155	Genomics and the tree physiologist. Tree Physiology, 2002, 22, 1273-1276.	1.4	27
156	<title>Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen</title> ., 2002, 4576, 188.		9
157	Net Primary Productivity of a CO 2 -Enriched Deciduous Forest and the Implications for Carbon Storage., 2002, 12, 1261.		7
158	NET PRIMARY PRODUCTIVITY OF A CO2-ENRICHED DECIDUOUS FOREST AND THE IMPLICATIONS FOR CARBON STORAGE. , 2002, 12, 1261-1266.		91
159	Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant, Cell and Environment, 2002, 25, 379-393.	2.8	131
160	Sensitivity of stomatal and canopy conductance to elevated CO 2 concentration–Âinteracting variables and perspectives of scale. New Phytologist, 2002, 153, 485-496.	3.5	158
161	Plant water relations at elevated CO2 - implications for water-limited environments. Plant, Cell and Environment, 2002, 25, 319-331.	2.8	352
162	Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. Forest Ecology and Management, 2001, 143, 205-213.	1.4	188

#	Article	IF	Citations
163	A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 2001, 106, 153-168.	1.9	626
164	Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE). New Phytologist, 2001, 150, 489-498.	3.5	101
165	Comparing the Performance of Forest gap Models in North America. Climatic Change, 2001, 51, 349-388.	1.7	45
166	Below-Ground Processes in Gap Models for Simulating Forest Response to Global Change. Climatic Change, 2001, 51, 449-473.	1.7	31
167	Hydraulic limitation of tree height: a critique. Functional Ecology, 2000, 14, 4-11.	1.7	122
168	Soil Carbon Dynamics beneath Switchgrass as Indicated by Stable Isotope Analysis. Journal of Environmental Quality, 2000, 29, 645-653.	1.0	126
169	Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acer saccharum: laboratory and field evidence. Tree Physiology, 2000, 20, 87-96.	1.4	185
170	Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees. Tree Physiology, 2000, 20, 511-518.	1.4	141
171	Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agricultural and Forest Meteorology, 2000, 104, 157-168.	1.9	111
172	Soil Carbon Inventories under a Bioenergy Crop (Switchgrass): Measurement Limitations. Journal of Environmental Quality, 1999, 28, 1359-1365.	1.0	159
173	Tree responses to rising CO2in field experiments: implications for the future forest. Plant, Cell and Environment, 1999, 22, 683-714.	2.8	691
174	Does elevated atmospheric CO2concentration inhibit mitochondrial respiration in green plants?. Plant, Cell and Environment, 1999, 22, 649-657.	2.8	153
175	A review of whole-plant water use studies in tree. Tree Physiology, 1998, 18, 499-512.	1.4	503
176	Whole-plant water flux in understory red maple exposed to altered precipitation regimes. Tree Physiology, 1998, 18, 71-79.	1.4	53
177	Energetic Costs of Tissue Construction in Yellow-poplar and White Oak Trees Exposed to Long-term CO2Enrichment. Annals of Botany, 1997, 80, 289-297.	1.4	36
178	Historical variations in terrestrial biospheric carbon storage. Global Biogeochemical Cycles, 1997, 11, 99-109.	1.9	70
179	The Potential Response of Terrestrial Carbon Storage to Changes in Climate and Atmospheric CO2. Climatic Change, 1997, 35, 199-227.	1.7	127
180	Temperatureâ€controlled openâ€top chambers for global change research. Global Change Biology, 1997, 3, 259-267.	4.2	115

#	Article	IF	Citations
181	Photosynthetic Rates and Ploidy Levels among Populations of Switchgrass. Crop Science, 1996, 36, 306-312.	0.8	70
182	Diversity among Populations of Switchgrass Based on RAPD Markers. Crop Science, 1996, 36, 1017-1022.	0.8	115
183	Tree Responses to Elevated CO2 and Implications for Forests. , 1996, , 1-21.		29
184	Switchgrass as a sustainable bioenergy crop. Bioresource Technology, 1996, 56, 83-93.	4.8	339
185	Growth and maintenance respiration in leaves of northern red oak seedlings and mature trees after 3 years of ozone exposure. Plant, Cell and Environment, 1996, 19, 577-584.	2.8	22
186	Measuring stem water content in four deciduous hardwoods with a time-domain reflectometer. Tree Physiology, 1996, 16, 809-815.	1.4	85
187	Are seedlings reasonable surrogates for trees? An analysis of ozone impacts on Quercus rubra. Water, Air, and Soil Pollution, 1995, 85, 1317-1324.	1.1	33
188	Growth and maintenance respiration in stems of Quercus alba after four years of CO2 enrichment. Physiologia Plantarum, 1995, 93, 47-54.	2.6	41
189	In search of the missing carbon sink: a model of terrestrial biospheric response to land-use change and atmospheric CO2. Tellus, Series B: Chemical and Physical Meteorology, 1995, 47, 501-519.	0.8	25
190	Increased growth efficiency of Quercus alba trees in a CO 2 â€enriched atmosphere. New Phytologist, 1995, 131, 91-97.	3.5	80
191	Respiratory responses of higher plants to atmospheric CO2 enrichment. Physiologia Plantarum, 1994, 90, 221-229.	2.6	11
192	Modeling the belowground response of plants and soil biota to edaphic and climatic change—What can we expect to gain?. Plant and Soil, 1994, 165, 149-160.	1.8	28
193	Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective. Photosynthesis Research, 1994, 39, 369-388.	1.6	345
194	Respiratory responses of higher plants to atmospheric CO2 enrichment. Physiologia Plantarum, 1994, 90, 221-229.	2.6	106
195	Growth and physiology of Northern Red Oak: Preliminary comparisons of mature tree and seedling responses to ozone. Environmental Pollution, 1994, 83, 215-221.	3.7	39
196	Anatomical considerations related to photosynthesis in cotton (Gossypium hirsutumL.) leaves, bracts, and the capsule wall. Journal of Experimental Botany, 1994, 45, 111-118.	2.4	44
197	Forest responses to CO2 enrichment and climate warming. Water, Air, and Soil Pollution, 1993, 70, 309-323.	1.1	24
198	Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO2: no loss of photosynthetic enhancement. Plant, Cell and Environment, 1993, 16, 797-807.	2.8	164

#	Article	lF	CITATIONS
199	Biochemical Limitations to Carbon Assimilation in C3Plantsâ€"A Retrospective Analysis of theA/CiCurves from 109 Species. Journal of Experimental Botany, 1993, 44, 907-920.	2.4	952
200	Respiratory cost of leaf growth and maintenance in white oak saplings exposed to atmospheric CO ₂ enrichment. Canadian Journal of Forest Research, 1992, 22, 1717-1721.	0.8	66
201	Assessing the influence of exogenous ethylene on electron transport and fluorescence quenching in leaves of Glycine max. Environmental and Experimental Botany, 1992, 32, 449-455.	2.0	9
202	Canopy Leaf Area Development and Ageâ€Class Dynamics in Cotton. Crop Science, 1992, 32, 451-456.	0.8	17
203	Productivity and compensatory responses of yellow-poplar trees in elevated CO2. Nature, 1992, 357, 322-324.	13.7	343
204	Growth and maintenance respiration in leaves of Liriodendron tulipifera L. exposed to long-term carbon dioxide enrichment in the field. New Phytologist, 1992, 121, 515-523.	3.5	96
205	Water Deficit Effects on the Cotton Leaf Cuticle and the Efficiency of Defoliants. Journal of Production Agriculture, 1991, 4, 260-265.	0.4	17
206	Evidence for Light-Dependent Recycling of Respired Carbon Dioxide by the Cotton Fruit. Plant Physiology, 1991, 97, 574-579.	2.3	27
207	Osmotic Adjustment and the Growth Response of Seven Vegetable Crops following Water-deficit Stress. Hortscience: A Publication of the American Society for Hortcultural Science, 1991, 26, 1210-1212.	0.5	12
208	Implication of ectomycorrhizal fungi in the cytokinin relations of loblolly pine (Pinus taeda L.)*. New Phytologist, 1990, 116, 681-688.	3.5	19
209	Photosynthesis of individual field-grown cotton leaves during ontogeny. Photosynthesis Research, 1990, 23, 163-170.	1.6	53
210	Physiological Response of Rice (<i>Oryza sativa</i>) to Fenoxaprop. Weed Science, 1990, 38, 459-462.	0.8	8
211	Photosynthetic Carbon Production and Use by Developing Cotton Leaves and Bolls. Crop Science, 1990, 30, 1259-1264.	0.8	102
212	Photosynthetic and Respiratory Activity of Fruiting Forms within the Cotton Canopy. Plant Physiology, 1990, 94, 463-469.	2.3	46
213	Canopy development and photosynthesis of cotton as influenced by nitrogen nutrition. Journal of Plant Nutrition, 1990, 13, 1141-1154.	0.9	47
214	Impact of verticillium wilt on net photosynthesis, respiration and photorespiration in field-grown cotton (Gossypium hirsutum L.). Physiological and Molecular Plant Pathology, 1990, 37, 271-280.	1.3	36
215	Physiological responses of two soybean [Glycine max (L.) Merr] cultivars to short-term flooding. Environmental and Experimental Botany, 1990, 30, 85-92.	2.0	118
216	Osmotic adjustment in tissues of tall fescue in response to water deficit. Environmental and Experimental Botany, 1990, 30, 149-156.	2.0	66

#	Article	IF	CITATIONS
217	Water use efficiency as a function of leaf age and position within the cotton canopy. Plant and Soil, 1989, 120, 79-85.	1.8	13
218	The occurrence of an internal cuticle in cotton (Gossypium hirsutum L.) leaf stomates. Environmental and Experimental Botany, 1989, 29, 229-235.	2.0	23
219	Field measurement of leaf water potential with a temperature-corrected in situ thermocouple psychrometer. Plant, Cell and Environment, 1988, 11, 199-203.	2.8	16
220	The citrus leaf cuticle in relation to measurement of leaf water potential using thermocouple psychrometers*. Plant, Cell and Environment, 1988, 11, 129-135.	2.8	2
221	Osmotic Adjustment in Cotton (Gossypium hirsutum L.) Leaves and Roots in Response to Water Stress. Plant Physiology, 1987, 84, 1154-1157.	2.3	61
222	Electron Microscope Study of Cuticular Abrasion on Cotton Leaves in Relation to Water Potential Measurements. Journal of Experimental Botany, 1987, 38, 660-667.	2.4	12
223	Water Flow Through Cotton Roots in Relation to Xylem Anatomy. Journal of Experimental Botany, 1987, 38, 1866-1874.	2.4	28
224	A Rapid Leaf-Disc Sampler for Psychrometric Water Potential Measurements. Plant Physiology, 1986, 81, 684-685.	2.3	8
225	Detection of Xylem Cavitation in Corn under Field Conditions. Plant Physiology, 1986, 82, 597-599.	2.3	137
226	Integrated Stomatal Opening as an Indicator of Water Stress in Zea1. Crop Science, 1984, 24, 245.	0.8	10
227	Use of Gentamicin in Axenic Culturing of Ectomycorrhizal Plants. Applied and Environmental Microbiology, 1982, 44, 506-508.	1.4	4
228	Forest Trees and Their Response to Atmospheric Carbon Dioxide Enrichment: A Compilation of Results. ASA Special Publication, 0, , 79-100.	0.8	10
229	Upscaling Methane Flux From Plot Level to Eddy Covariance Tower Domains in Five Alaskan Tundra Ecosystems. Frontiers in Environmental Science, 0, 10, .	1.5	O