
Cristina A Ghiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7117629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nature Neuroscience, 2005, 8, 476-483.	14.8	664
2	Linking neural activity and molecular oscillations in the SCN. Nature Reviews Neuroscience, 2011, 12, 553-569.	10.2	377
3	Age-Related Decline in Circadian Output. Journal of Neuroscience, 2011, 31, 10201-10205.	3.6	315
4	Circadian modulation of learning and memory in fear-conditioned mice. Behavioural Brain Research, 2002, 133, 95-108.	2.2	246
5	Glutamate receptors in glia: new cells, new inputs and new functions. Trends in Pharmacological Sciences, 2000, 21, 252-258.	8.7	212
6	Expression of the Circadian Clock Gene <i>Period2</i> in the Hippocampus: Possible Implications for Synaptic Plasticity and Learned Behaviour. ASN Neuro, 2009, 1, AN20090020.	2.7	173
7	How to fix a broken clock. Trends in Pharmacological Sciences, 2013, 34, 605-619.	8.7	169
8	Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G ₁ /S phase progression of the cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2350-2355.	7.1	162
9	Glial heterogeneity in expression of the inwardly rectifying K+ channel, Kir4.1, in adult rat CNS. , 2000, 30, 362-372.		158
10	K ⁺ Channel Expression and Cell Proliferation Are Regulated by Intracellular Sodium and Membrane Depolarization in Oligodendrocyte Progenitor Cells. Journal of Neuroscience, 1997, 17, 2669-2682.	3.6	143
11	Dysfunctions in circadian behavior and physiology in mouse models of Huntington's disease. Experimental Neurology, 2011, 228, 80-90.	4.1	143
12	Voltage-Activated K+Channels and Membrane Depolarization Regulate Accumulation of the Cyclin-Dependent Kinase Inhibitors p27Kip1and p21CIP1in Glial Progenitor Cells. Journal of Neuroscience, 1999, 19, 5380-5392.	3.6	131
13	Fast delayed rectifier potassium current is required for circadian neural activity. Nature Neuroscience, 2005, 8, 650-656.	14.8	124
14	The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Molecular Psychiatry, 2010, 15, 204-215.	7.9	118
15	Gonadal- and Sex-Chromosome-Dependent Sex Differences in the Circadian System. Endocrinology, 2013, 154, 1501-1512.	2.8	109
16	Age-Related Changes in the Circadian System Unmasked by Constant Conditions. ENeuro, 2015, 2, ENEURO.0064-15.2015.	1.9	86
17	Rapid Changes in the Light/Dark Cycle Disrupt Memory of Conditioned Fear in Mice. PLoS ONE, 2010, 5, e12546.	2.5	84
18	STAT3â€Mediated astrogliosis protects myelin development in neonatal brain injury. Annals of Neurology, 2012, 72, 750-765.	5.3	81

#	Article	IF	CITATIONS
19	The Q175 Mouse Model of Huntington's Disease Shows Gene Dosage- and Age-Related Decline in Circadian Rhythms of Activity and Sleep. PLoS ONE, 2013, 8, e69993.	2.5	77
20	Golli Protein Negatively Regulates Store Depletion-Induced Calcium Influx in T Cells. Immunity, 2006, 24, 717-727.	14.3	76
21	Circadian Regulation of A-Type Potassium Currents in the Suprachiasmatic Nucleus. Journal of Neurophysiology, 2010, 103, 632-640.	1.8	73
22	Regulation of Inhibitory Synaptic Transmission by Vasoactive Intestinal Peptide (VIP) in the Mouse Suprachiasmatic Nucleus. Journal of Neurophysiology, 2003, 90, 1589-1597.	1.8	71
23	Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington's Disease. ENeuro, 2018, 5, ENEURO.0431-17.2017.	1.9	65
24	Inhibition of Cyclin E–Cyclin-Dependent Kinase 2 Complex Formation and Activity Is Associated with Cell Cycle Arrest and Withdrawal in Oligodendrocyte Progenitor Cells. Journal of Neuroscience, 2001, 21, 1274-1282.	3.6	62
25	Dysbindin-Containing Complexes and their Proposed Functions in Brain: From Zero to (too) Many in a Decade. ASN Neuro, 2011, 3, AN20110010.	2.7	61
26	Voluntary Exercise Increases Oligodendrogenesis in Spinal Cord. International Journal of Neuroscience, 2010, 120, 280-290.	1.6	58
27	Population Encoding by Circadian Clock Neurons Organizes Circadian Behavior. Journal of Neuroscience, 2009, 29, 1670-1676.	3.6	57
28	Membrane Currents, Gene Expression, and Circadian Clocks. Cold Spring Harbor Perspectives in Biology, 2017, 9, a027714.	5.5	57
29	Fast Delayed Rectifier Potassium Current: Critical for Input and Output of the Circadian System. Journal of Neuroscience, 2011, 31, 2746-2755.	3.6	56
30	Exercise decreases myelin-associated glycoprotein expression in the spinal cord and positively modulates neuronal growth. Glia, 2007, 55, 966-975.	4.9	55
31	Neurotransmitter receptor activation triggers p27(Kip1)and p21(CIP1) accumulation and G1 cell cycle arrest in oligodendrocyte progenitors. Development (Cambridge), 1999, 126, 1077-90.	2.5	53
32	Inhibition of p53 Transcriptional Activity: A Potential Target for Future Development of Therapeutic Strategies for Primary Demyelination. Journal of Neuroscience, 2008, 28, 6118-6127.	3.6	47
33	Region-Specific Myelin Pathology in Mice Lacking the Golli Products of the Myelin Basic Protein Gene. Journal of Neuroscience, 2005, 25, 7004-7013.	3.6	46
34	Effects of Vasoactive Intestinal Peptide Genotype on Circadian Gene Expression in the Suprachiasmatic Nucleus and Peripheral Organs. Journal of Biological Rhythms, 2011, 26, 200-209.	2.6	45
35	NMDA receptor function is enhanced in the hippocampus of aged rats. Neurochemical Research, 1994, 19, 483-487.	3.3	44
36	Defining circadian disruption in neurodegenerative disorders. Journal of Clinical Investigation, 2021, 131, .	8.2	44

#	Article	IF	CITATIONS
37	Regulation of Lâ€type Ca ⁺⁺ currents and process morphology in white matter oligodendrocyte precursor cells by golliâ€myelin proteins. Clia, 2010, 58, 1292-1303.	4.9	43
38	Early Effects of Lipopolysaccharide-Induced Inflammation on Foetal Brain Development in Rat. ASN Neuro, 2011, 3, AN20110027.	2.7	43
39	Circadian rhythm disruption in a mouse model of Rett syndrome circadian disruption in RTT. Neurobiology of Disease, 2015, 77, 155-164.	4.4	41
40	Misaligned feeding impairs memories. ELife, 2015, 4, .	6.0	40
41	Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus. Journal of Neurophysiology, 2013, 110, 1097-1106.	1.8	39
42	Sex Differences in Circadian Dysfunction in the BACHD Mouse Model of Huntington's Disease. PLoS ONE, 2016, 11, e0147583.	2.5	38
43	Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington's disease. Neurobiology of Sleep and Circadian Rhythms, 2017, 2, 39-52.	2.8	35
44	Decreased Reelin Expression and Organophosphate Pesticide Exposure Alters Mouse Behaviour and Brain Morphology. ASN Neuro, 2013, 5, AN20120060.	2.7	34
45	Circadian-based Treatment Strategy Effective in the BACHD Mouse Model of Huntington's Disease. Journal of Biological Rhythms, 2018, 33, 535-554.	2.6	33
46	Growth factor-dependent actions of PACAP on oligodendrocyte progenitor proliferation. Regulatory Peptides, 2006, 137, 58-66.	1.9	31
47	Cardiac Dysfunction in the BACHD Mouse Model of Huntington's Disease. PLoS ONE, 2016, 11, e0147269.	2.5	30
48	Synthesis and benzodiazepine receptor binding of some imidazo-, pyrimido[2,1-b]benzoxazoles and pyrimido[1,2-a]benzimidazoles. European Journal of Medicinal Chemistry, 1997, 32, 83-89.	5.5	28
49	Aspartoacylase deficiency affects early postnatal development of oligodendrocytes and myelination. Neurobiology of Disease, 2010, 40, 432-443.	4.4	28
50	Baroreceptor reflex dysfunction in the BACHD mouse model of Huntington's disease PLOS Currents, 2011, 3, RRN1266.	1.4	28
51	Long-term treatment with abecarnil fails to induce tolerance in mice. European Journal of Pharmacology, 1994, 259, 1-6.	3.5	27
52	Neurite outgrowth defects in hippocampal neurons from mice lacking biogenesis of lysosome-related organelles complex-1 (BLOC-1). Molecular Psychiatry, 2010, 15, 115-115.	7.9	25
53	Golli myelin basic proteins stimulate oligodendrocyte progenitor cell proliferation and differentiation in remyelinating adult mouse brain. Glia, 2012, 60, 1078-1093.	4.9	25
54	Pharmacology of gamma-aminobutyric acidA receptor complex after the in vivo administration of the anxioselective and anticonvulsant beta-carboline derivative abecarnil. Journal of Pharmacology and Experimental Therapeutics, 1992, 263, 1360-8.	2.5	24

#	Article	IF	CITATIONS
55	Chronic administration of an anticonvulsant dose of imidazenil fails to induce tolerance of GABAA receptor function in mice. European Journal of Pharmacology, 1994, 254, 299-302.	3.5	23
56	Antagonism by Abecarnil of Enhanced Acetylcholine Release in the Rat Brain During Anticipation But Not Consumption of Food. Pharmacology Biochemistry and Behavior, 1998, 59, 657-662.	2.9	23
57	Histamine resets the circadian clock in the suprachiasmatic nucleus through the H1R a _V 1.3â€RyR pathway in the mouse. European Journal of Neuroscience, 2015, 42, 2467-2477.	. 2.6	22
58	Reductions in synaptic proteins and selective alteration of prepulse inhibition in male C57BL/6 mice after postnatal administration of a VIP receptor (VIPR2) agonist. Psychopharmacology, 2015, 232, 2181-2189.	3.1	21
59	Possible use of a H3R antagonist for the management of nonmotor symptoms in the Q175 mouse model of Huntington's disease. Pharmacology Research and Perspectives, 2017, 5, e00344.	2.4	21
60	Neurocardiovascular deficits in the Q175 mouse model of Huntington's disease. Physiological Reports, 2017, 5, e13289.	1.7	21
61	Imidazenil, a new partial agonist of benzodiazepine receptors, reverses the inhibitory action of isoniazid and stress on gamma-aminobutyric acidA receptor function. Journal of Pharmacology and Experimental Therapeutics, 1994, 269, 32-8.	2.5	21
62	Potential Circadian Rhythms in Oligodendrocytes? Working Together Through Time. Neurochemical Research, 2020, 45, 591-605.	3.3	20
63	Genetic Program of Neuronal Differentiation and Growth Induced by Specific Activation of NMDA Receptors. Neurochemical Research, 2007, 32, 363-376.	3.3	18
64	Synthesis and Anticonvulsant Activity of Some 1,2,3,3 <i>a</i> -Tetrahydropyrrolo[2,1- <i>b</i>]-benzothiazol-, -thiazol-or -oxazolâ^'1â^'ones in Rodents. Journal of Pharmacy and Pharmacology, 2011, 48, 834-840.	2.4	18
65	Pathophysiology in the suprachiasmatic nucleus in mouse models of Huntington's disease. Journal of Neuroscience Research, 2018, 96, 1862-1875.	2.9	18
66	Melatonin treatment of repetitive behavioral deficits in the Cntnap2 mouse model of autism spectrum disorder. Neurobiology of Disease, 2020, 145, 105064.	4.4	18
67	Biochemical evaluations of the effects of loreclezole and propofol on the GABAA receptor in rat brain. Biochemical Pharmacology, 1996, 51, 1527-1534.	4.4	15
68	Sleep/Wake Disruption in a Mouse Model of BLOC-1 Deficiency. Frontiers in Neuroscience, 2018, 12, 759.	2.8	15
69	Sleep and circadian dysfunction in neurodegenerative disorders: insights from a mouse model of Huntington's disease. Minerva Pneumologica, 2012, 51, 93-106.	1.6	15
70	Circadian dysfunction in the Q175 model of Huntington's disease: Network analysis. Journal of Neuroscience Research, 2019, 97, 1606-1623.	2.9	14
71	Failure of flumazenil to precipitate a withdrawal syndrome in cats chronically treated with the new anxioselective p-carboline derivative abecarnil. Behavioural Pharmacology, 1993, 4, 529???534.	1.7	12
72	Gene expression is differentially regulated by neurotransmitters in embryonic neuronal cortical culture. Journal of Neurochemistry, 2006, 97, 35-43.	3.9	10

#	Article	IF	CITATIONS
73	Cellular and molecular mechanisms of neurodevelopmental disorders. Journal of Neuroscience Research, 2017, 95, 1093-1096.	2.9	10
74	Project Brainstorm: Using Neuroscience to Connect College Students with Local Schools. PLoS Biology, 2012, 10, e1001310.	5.6	9
75	Quantitative assessments reveal improved neuroscience engagement and learning through outreach. Journal of Neuroscience Research, 2019, 97, 1153-1162.	2.9	9
76	BLOC-1 deficiency causes alterations in amino acid profile and in phospholipid and adenosine metabolism in the postnatal mouse hippocampus. Scientific Reports, 2017, 7, 5231.	3.3	6
77	Pharmacological Evidence for Full Agonist Activity of Abecarnil at Certain GABAA Receptors. , 1993, 11, 62-78.		6
78	Antagonism of isoniazid-induced convulsions by abecarnil in mice tolerant to diazepam. Pharmacology Biochemistry and Behavior, 1995, 52, 249-254.	2.9	5
79	Antagonism of convulsions but failure to enhance GABA(A) receptor function by felbamate in mice tolerant to diazepam. Neurochemical Research, 1997, 22, 693-697.	3.3	5
80	Failure of Chronic Treatment with Abecarnil to Induce Contingent and Noncontingent Tolerance in Pentylenetetrazol-Kindled Rats. Epilepsia, 1996, 37, 332-335.	5.1	4
81	Circadian and ultradian rhythms in normal mice and in a mouse model of Huntington's disease. Chronobiology International, 2022, 39, 513-524.	2.0	4
82	Do Disruptions in the Circadian Timing System Contribute to Autonomic Dysfunction in Huntington's Disease?. Yale Journal of Biology and Medicine, 2019, 92, 291-303.	0.2	3
83	Preparation of Normal and Reactive Astrocyte Cultures. Springer Protocols, 2009, , 193-215.	0.3	2
84	Targeted Genetic Reduction of Mutant Huntingtin Lessens Cardiac Pathology in the BACHD Mouse Model of Huntington's Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 810810.	2.4	2
85	The degeneration of the excitatory climbing fibers enhances [3H]MK-801 and [3H]CGP 39653 binding sites in the rat cerebellar cortex. Neuroscience Letters, 1992, 146, 45-47.	2.1	1
86	Felbamate antagonizes isoniazid- and FG 7142-induced reduction of GABAA receptor function in mouse brain. European Journal of Pharmacology, 1994, 265, 185-188.	3.5	1
87	Reply: glia and neurons continue to talk. Trends in Pharmacological Sciences, 2000, 21, 375.	8.7	1
88	Isoniazid-induced inhibition of GABAergic transmission enhances the efficacy of imidazenil, a new partial agonist of benzodiazepine receptors. European Neuropsychopharmacology, 1993, 3, 268-269.	0.7	0
89	Differential modulation of GABAA receptor by loreclezole and propofol, two selective ligands for ?? subunits. Behavioural Pharmacology, 1995, 6, 105.	1.7	0
90	Temporal Coding of Sleep. Cell, 2018, 175, 1177-1179.	28.9	0

#	Article	IF	CITATIONS
91	Sexâ€dimorphic effects of biogenesis of lysosomeâ€related organelles complexâ€1 deficiency on mouse perinatal brain development. Journal of Neuroscience Research, 2021, 99, 67-89.	2.9	0