
Calvin W L Chin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7117543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relationship of Quantitative Retinal Capillary Network and Myocardial Remodeling in Systemic Hypertension. Journal of the American Heart Association, 2022, 11, e024226.	3.7	14
2	Association of Myocardial Fibrosis and Stroke Volume by Cardiovascular Magnetic Resonance in Patients With Severe Aortic Stenosis With Outcome After Valve Replacement. JAMA Cardiology, 2022, 7, 513.	6.1	2
3	The remodelling index risk stratifies patients with hypertensive left ventricular hypertrophy. European Heart Journal Cardiovascular Imaging, 2021, 22, 670-679.	1.2	12
4	Multiparametric exercise stress cardiovascular magnetic resonance in the diagnosis of coronary artery disease: the EMPIRE trial. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 17.	3.3	6
5	First-phase ejection fraction by cardiovascular magnetic resonance predicts outcomes in aortic stenosis. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 73.	3.3	2
6	Developing a normative database for retinal perfusion using optical coherence tomography angiography. Biomedical Optics Express, 2021, 12, 4032.	2.9	8
7	Markers of Myocardial Damage Predict Mortality in Patients With Aortic Stenosis. Journal of the American College of Cardiology, 2021, 78, 545-558.	2.8	41
8	A Machine-Learning Framework to Identify Distinct Phenotypes of AorticÂStenosis Severity. JACC: Cardiovascular Imaging, 2021, 14, 1707-1720.	5.3	39
9	A novel cardiovascular magnetic resonance risk score for predicting mortality following surgical aortic valve replacement. Scientific Reports, 2021, 11, 20183.	3.3	6
10	Aortic Stenosis: The Old Disease With New (and Evolving) Faces. Journal of the American Heart Association, 2021, 10, e023531.	3.7	0
11	Echocardiographic Global Longitudinal Strain Is Associated With Myocardial Fibrosis and Predicts Outcomes in Aortic Stenosis. Frontiers in Cardiovascular Medicine, 2021, 8, 750016.	2.4	19
12	Feasibility to Perform T ₂ * Mapping Postcontrast Administration in Reperfused STEMI Patients for the Detection of Intramyocardial Hemorrhage. Journal of Magnetic Resonance Imaging, 2020, 51, 644-645.	3.4	1
13	Generating wall shear stress for coronary artery in real-time using neural networks: Feasibility and initial results based on idealized models. Computers in Biology and Medicine, 2020, 126, 104038.	7.0	15
14	Genetic Studies of Hypertrophic Cardiomyopathy in Singaporeans Identify Variants in <i>TNNI3</i> and <i>TNNT2</i> That Are Common in Chinese Patients. Circulation Genomic and Precision Medicine, 2020, 13, 424-434.	3.6	18
15	Determinants and prognostic value of echocardiographic first-phase ejection fraction in aortic stenosis. Heart, 2020, 106, 1236-1243.	2.9	22
16	Paradoxical Higher Myocardial Wall Stress and Increased Cardiac Remodeling Despite Lower Mass in Females. Journal of the American Heart Association, 2020, 9, e014781.	3.7	7
17	Extracellular Myocardial Volume in Patients With Aortic Stenosis. Journal of the American College of Cardiology, 2020, 75, 304-316.	2.8	141
18	The application of exercise stress cardiovascular magnetic resonance in patients with suspected dilated cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 10.	3.3	12

CALVIN W L CHIN

#	Article	IF	CITATIONS
19	Sex differences in left ventricular remodelling, myocardial fibrosis and mortality after aortic valve replacement. Heart, 2019, 105, 1818-1824.	2.9	30
20	Left Ventricular Fibrosis in Patients with Aortic Stenosis. , 2019, , 127-139.		0
21	Seipin Knockout Mice Develop HeartÂFailure With Preserved EjectionÂFraction. JACC Basic To Translational Science, 2019, 4, 924-937.	4.1	24
22	Global Longitudinal Strain Analysis Using Cardiac MRI in Aortic Stenosis: Comparison with Left Ventricular Remodeling, Myocardial Fibrosis, and 2-year Clinical Outcomes. Radiology: Cardiothoracic Imaging, 2019, 1, e190027.	2.5	9
23	Importance of Sex-Specific Regression Models to Estimate Synthetic Hematocrit and Extracellular Volume Fraction. JACC: Cardiovascular Imaging, 2018, 11, 1366-1367.	5.3	4
24	Cardiac magnetic resonance T1 and extracellular volume mapping with motion correction and co-registration based on fast elastic image registration. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2018, 31, 115-129.	2.0	15
25	Adverse prognosis associated with asymmetric myocardial thickening in aortic stenosis. European Heart Journal Cardiovascular Imaging, 2018, 19, 347-356.	1.2	23
26	Cardiac myosin-binding protein C is a novel marker of myocardial injury and fibrosis in aortic stenosis. Heart, 2018, 104, 1101-1108.	2.9	15
27	High-Sensitivity cardiac Troponins in Cardio-Healthy Subjects: A Cardiovascular Magnetic Resonance Imaging Study. Scientific Reports, 2018, 8, 15409.	3.3	12
28	Myocardial Scar and Mortality in Severe Aortic Stenosis. Circulation, 2018, 138, 1935-1947.	1.6	181
29	Progression of Hypertrophy and Myocardial Fibrosis in Aortic Stenosis. Circulation: Cardiovascular Imaging, 2018, 11, e007451.	2.6	139
30	Myocardial Fibrosis and Cardiac Decompensation in Aortic Stenosis. JACC: Cardiovascular Imaging, 2017, 10, 1320-1333.	5.3	280
31	Novel Index of Maladaptive Myocardial Remodeling in Hypertension. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	32
32	Paradoxical Low-Gradient Aortic Stenosis. Journal of the American College of Cardiology, 2016, 67, 2447-2448.	2.8	12
33	The role of cardiac biochemical markers in aortic stenosis. Biomarkers, 2016, 21, 316-327.	1.9	15
34	A clinical risk score of myocardial fibrosis predicts adverse outcomes in aortic stenosis. European Heart Journal, 2016, 37, 713-723.	2.2	90
35	T1 characteristics of interstitial pulmonary fibrosis on 3T MRI-a predictor of early interstitial change?. Quantitative Imaging in Medicine and Surgery, 2016, 6, 42-9.	2.0	25
36	Valvular 18F-Fluoride and 18F-Fluorodeoxyglucose Uptake Predict Disease Progression and Clinical Outcome in Patients With Aortic Stenosis. Journal of the American College of Cardiology, 2015, 66, 1200-1201.	2.8	88

CALVIN W L CHIN

#	Article	IF	CITATIONS
37	Risk Stratification in Patients With Aortic Stenosis Using Novel Imaging Approaches. Circulation: Cardiovascular Imaging, 2015, 8, e003421.	2.6	46
38	Paradoxical low-flow low-gradient aortic stenosis: advanced severe disease, a new entity or a progression of disease?. Heart, 2015, 101, 1079.2-1079.	2.9	2
39	Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. European Heart Journal Cardiovascular Imaging, 2014, 15, 556-565.	1.2	96
40	High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis. European Heart Journal, 2014, 35, 2312-2321.	2.2	193
41	Assessment of Arterial Elastance and Ventricular-Arterial Coupling in Patients with Systemic Lupus Erythematosus. International Journal of Cardiology, 2014, 176, 504-505.	1.7	1
42	Left Ventricular Hypertrophy With Strain and Aortic Stenosis. Circulation, 2014, 130, 1607-1616.	1.6	116
43	18F-Sodium Fluoride Uptake Is a Marker of Active Calcification and Disease Progression in Patients With Aortic Stenosis. Circulation: Cardiovascular Imaging, 2014, 7, 371-378.	2.6	210
44	Endothelial function is associated with myocardial diastolic function in women with systemic lupus erythematosus. Rheumatology International, 2014, 34, 1281-1285.	3.0	17
45	Markers of left ventricular decompensation in aortic stenosis. Expert Review of Cardiovascular Therapy, 2014, 12, 901-912.	1.5	23
46	Echocardiography Underestimates Stroke Volume and Aortic Valve Area: Implications for Patients With Small-Area Low-Gradient Aortic Stenosis. Canadian Journal of Cardiology, 2014, 30, 1064-1072.	1.7	64
47	Small Valve Area With Low-Gradient Aortic Stenosis. Journal of the American College of Cardiology, 2013, 62, 2339-2340.	2.8	12
48	What can we learn about valvular heart disease from PET/CT?. Future Cardiology, 2013, 9, 657-667.	1.2	10
49	An octogenarian with painless type A aortic dissection and cardiac tamponade. Postgraduate Medical Journal, 2012, 88, 729-730.	1.8	1
50	Free floating thrombus in the right heart causing pulmonary embolism. Postgraduate Medical Journal, 2010, 86, 307-308.	1.8	4
51	Prognosis associated with geometric patterns of left ventricular remodeling: systematic review and network meta-analysis. F1000Research, 0, 8, 1130.	1.6	2