
Bradley Cairns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7116274/publications.pdf Version: 2024-02-01

RDADLEV CAIDNS

#	Article	IF	CITATIONS
1	Establishment of developmental gene silencing by ordered polycomb complex recruitment in early zebrafish embryos. ELife, 2022, 11, .	6.0	13
2	GFI1 Cooperates with IKZF1/IKAROS to Activate Gene Expression in T-cell Acute Lymphoblastic Leukemia. Molecular Cancer Research, 2022, 20, 501-514.	3.4	4
3	Single-cell analysis of human testis aging and correlation with elevated body mass index. Developmental Cell, 2022, 57, 1160-1176.e5.	7.0	47
4	Germ cell differentiation requires Tdrd7-dependent chromatin and transcriptome reprogramming marked by germ plasm relocalization. Developmental Cell, 2021, 56, 641-656.e5.	7.0	18
5	Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell, 2021, 28, 764-778.e4.	11.1	104
6	PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nature Cell Biology, 2021, 23, 424-436.	10.3	115
7	CTCF looping is established during gastrulation in medaka embryos. Genome Research, 2021, 31, 968-980.	5.5	37
8	Chromatin architecture transitions from zebrafish sperm through early embryogenesis. Genome Research, 2021, 31, 981-994.	5.5	48
9	A Role for SMARCB1 in Synovial Sarcomagenesis Reveals That SS18–SSX Induces Canonical BAF Destruction. Cancer Discovery, 2021, 11, 2620-2637.	9.4	26
10	p53 convergently activates Dux/DUX4 in embryonic stem cells and in facioscapulohumeral muscular dystrophy cell models. Nature Genetics, 2021, 53, 1207-1220.	21.4	59
11	Dissecting mammalian spermatogenesis using spatial transcriptomics. Cell Reports, 2021, 37, 109915.	6.4	54
12	The Dynamic Transcriptional Cell Atlas of Testis Development during Human Puberty. Cell Stem Cell, 2020, 26, 262-276.e4.	11.1	155
13	Cancer-Associated Gain-of-Function Mutations Activate a SWI/SNF-Family Regulatory Hub. Molecular Cell, 2020, 80, 712-725.e5.	9.7	20
14	Cisplatin and carboplatin result in similar gonadotoxicity in immature human testis with implications for fertility preservation in childhood cancer. BMC Medicine, 2020, 18, 374.	5.5	34
15	NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. PLoS Genetics, 2020, 16, e1008756.	3.5	11
16	Specialization of the chromatin remodeler RSC to mobilize partially-unwrapped nucleosomes. ELife, 2020, 9, .	6.0	18
17	Developmentally Programmed Tankyrase Activity Upregulates β-Catenin and Licenses Progression of Embryonic Genome Activation. Developmental Cell, 2020, 53, 545-560.e7.	7.0	12
18	NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.		0

NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756. 18

BRADLEY CAIRNS

#	Article	IF	CITATIONS
19	NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.		Ο
20	NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.		0
21	NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.		Ο
22	NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.		0
23	NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.		Ο
24	Structure of the RSC complex bound to the nucleosome. Science, 2019, 366, 838-843.	12.6	92
25	Genome-wide reconstitution of chromatin transactions reveals that RSC preferentially disrupts H2AZ-containing nucleosomes. Genome Research, 2019, 29, 988-998.	5.5	21
26	Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6784-6789.	7.1	162
27	Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan. Development (Cambridge), 2019, 146, .	2.5	13
28	Placeholder Nucleosomes Underlie Germline-to-Embryo DNA Methylation Reprogramming. Cell, 2018, 172, 993-1006.e13.	28.9	137
29	The adult human testis transcriptional cell atlas. Cell Research, 2018, 28, 1141-1157.	12.0	426
30	Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nature Genetics, 2017, 49, 925-934.	21.4	545
31	Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nature Reviews Molecular Cell Biology, 2017, 18, 407-422.	37.0	828
32	Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development. Cell Stem Cell, 2017, 21, 533-546.e6.	11.1	200
33	Tet proteins enhance the developmental hourglass. Nature Genetics, 2016, 48, 345-347.	21.4	3
34	Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection. Molecular Cell, 2016, 62, 453-461.	9.7	81
35	Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription. Nature Communications, 2016, 7, 11949.	12.8	50
36	Experimental Approaches for Target Profiling of RNA Cytosine Methyltransferases. Methods in Enzymology, 2015, 560, 273-296.	1.0	11

BRADLEY CAIRNS

#	Article	IF	CITATIONS
37	Selective repression of SINE transcription by RNA polymerase III. Mobile Genetic Elements, 2015, 5, 86-91.	1.8	7
38	Transcription and imprinting dynamics in developing postnatal male germline stem cells. Genes and Development, 2015, 29, 2312-2324.	5.9	61
39	SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nature Communications, 2015, 6, 6569.	12.8	80
40	Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertility and Sterility, 2015, 104, 1388-1397.e5.	1.0	153
41	HDAC1,2 inhibition impairs EZH2- and BBAP- mediated DNA repair to overcome chemoresistance in EZH2 gain-of-function mutant diffuse large B-cell lymphoma. Oncotarget, 2015, 6, 4863-4887.	1.8	35
42	The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. ELife, 2015, 4, e06073.	6.0	68
43	RNA Polymerase III Transcriptomes in Human Embryonic Stem Cells and Induced Pluripotent Stem Cells, and Relationships with Pluripotency Transcription Factors. PLoS ONE, 2014, 9, e85648.	2.5	31
44	Age-Associated Sperm DNA Methylation Alterations: Possible Implications in Offspring Disease Susceptibility. PLoS Genetics, 2014, 10, e1004458.	3.5	238
45	Transcriptome-wide target profiling of RNA cytosine methyltransferases using the mechanism-based enrichment procedure Aza-IP. Nature Protocols, 2014, 9, 337-361.	12.0	49
46	Chromatin and Transcription Transitions of Mammalian Adult Germline Stem Cells and Spermatogenesis. Cell Stem Cell, 2014, 15, 239-253.	11.1	280
47	Reprogramming the Maternal Zebrafish Genome after Fertilization to Match the Paternal Methylation Pattern. Cell, 2013, 153, 759-772.	28.9	354
48	Dnmt3 and G9a Cooperate for Tissue-specific Development in Zebrafish. Journal of Biological Chemistry, 2010, 285, 4110-4121.	3.4	114
49	Structural Studies of ATPâ€dependent chromatin remodeling. FASEB Journal, 2010, 24, 832.1.	0.5	0
50	The logic of chromatin architecture and remodelling at promoters. Nature, 2009, 461, 193-198.	27.8	399
51	The Biology of Chromatin Remodeling Complexes. Annual Review of Biochemistry, 2009, 78, 273-304.	11.1	1,891
52	The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nature Structural and Molecular Biology, 2008, 15, 469-476.	8.2	177
53	RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO Journal, 2008, 27, 100-110.	7.8	175
54	Chromatin remodeling: insights and intrigue from single-molecule studies. Nature Structural and Molecular Biology, 2007, 14, 989-996.	8.2	223

BRADLEY CAIRNS

2

#	Article	IF	CITATIONS
55	Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes. FASEB Journal, 2006, 20, A34.	0.5	0
56	Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nature Structural and Molecular Biology, 2005, 12, 747-755.	8.2	195
57	Chromatin remodeling complexes: strength in diversity, precision through specialization. Current Opinion in Genetics and Development, 2005, 15, 185-190.	3.3	153
58	Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO Journal, 2004, 23, 1348-1359.	7.8	213
59	Around the World of DNA Damage INO80 Days. Cell, 2004, 119, 733-735.	28.9	16
60	The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO Journal, 2003, 22, 3175-3187.	7.8	104
61	DNA Translocation and Nucleosome Remodeling Assays by the RSC Chromatin Remodeling Complex. Methods in Enzymology, 2003, 377, 322-343.	1.0	46
62	Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes and Development, 2002, 16, 2120-2134.	5.9	222
63	The Genome-Wide Localization of Rsc9, a Component of the RSC Chromatin-Remodeling Complex, Changes in Response to Stress. Molecular Cell, 2002, 9, 563-573.	9.7	135
64	A Rsc3/Rsc30 Zinc Cluster Dimer Reveals Novel Roles for the Chromatin Remodeler RSC in Gene Expression and Cell Cycle Control. Molecular Cell, 2001, 7, 741-751.	9.7	174
65	Two Functionally Distinct Forms of the RSC Nucleosome-Remodeling Complex, Containing Essential AT Hook, BAH, and Bromodomains. Molecular Cell, 1999, 4, 715-723.	9.7	205
66	Two Actin-Related Proteins Are Shared Functional Components of the Chromatin-Remodeling Complexes RSC and SWI/SNF. Molecular Cell, 1998, 2, 639-651.	9.7	200
67	RSC, an Essential, Abundant Chromatin-Remodeling Complex. Cell, 1996, 87, 1249-1260.	28.9	654

68 When spermatogenesis meets human aging and elevated body mass. , 0, , .