Adam M Siepielski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7116215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lt's about time: the temporal dynamics of phenotypic selection in the wild. Ecology Letters, 2009, 12, 1261-1276.	6.4	524
2	Precipitation drives global variation in natural selection. Science, 2017, 355, 959-962.	12.6	267
3	Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proceedings of the United States of America, 2015, 112, 1083-1088.	7.1	250
4	Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evolutionary Ecology, 2012, 26, 1101-1118.	1.2	234
5	On the evidence for species coexistence: a critique of the coexistence program. Ecology, 2010, 91, 3153-3164.	3.2	197
6	The spatial patterns of directional phenotypic selection. Ecology Letters, 2013, 16, 1382-1392.	6.4	183
7	Reciprocal Selection Causes a Coevolutionary Arms Race between Crossbills and Lodgepole Pine. American Naturalist, 2003, 162, 182-194.	2.1	168
8	Differences in the temporal dynamics of phenotypic selection among fitness components in the wild. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1572-1580.	2.6	105
9	Experimental evidence for neutral community dynamics governing an insect assemblage. Ecology, 2010, 91, 847-857.	3.2	93
10	INTERACTIONS AMONG MOTHS, CROSSBILLS, SQUIRRELS, AND LODGEPOLE PINE IN A GEOGRAPHIC SELECTION MOSAIC. Evolution; International Journal of Organic Evolution, 2004, 58, 95-101.	2.3	63
11	What Are the Environmental Determinants of Phenotypic Selection? A Meta-analysis of Experimental Studies. American Naturalist, 2017, 190, 363-376.	2.1	60
12	A KEYSTONE SELECTIVE AGENT? PINE SQUIRRELS AND THE FREQUENCY OF SEROTINY IN LODGEPOLE PINE. Ecology, 2004, 85, 2082-2087.	3.2	59
13	CONVERGENT PATTERNS IN THE SELECTION MOSAIC FOR TWO NORTH AMERICAN BIRD-DISPERSED PINES. Ecological Monographs, 2007, 77, 203-220.	5.4	47
14	CONFLICTING SELECTION FROM AN ANTAGONIST AND A MUTUALIST ENHANCES PHENOTYPIC VARIATION IN A PLANT. Evolution; International Journal of Organic Evolution, 2010, 64, 1120-1128.	2.3	46
15	NONCONSUMPTIVE PREDATOR-DRIVEN MORTALITY CAUSES NATURAL SELECTION ON PREY. Evolution; International Journal of Organic Evolution, 2014, 68, 696-704.	2.3	38
16	No evidence that warmer temperatures are associated with selection for smaller body sizes. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191332.	2.6	35
17	A seed predator drives the evolution of a seed dispersal mutualism. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1917-1925.	2.6	32
18	Towards Global Volunteer Monitoring of Odonate Abundance. BioScience, 2020, 70, 914-923.	4.9	32

ADAM M SIEPIELSKI

#	Article	IF	CITATIONS
19	Niche versus neutrality in structuring the beta diversity of damselfly assemblages. Freshwater Biology, 2013, 58, 758-768.	2.4	31
20	On the Origin of Coexisting Species. Trends in Ecology and Evolution, 2021, 36, 284-293.	8.7	31
21	Signature of ecological partitioning in the maintenance of damselfly diversity. Journal of Animal Ecology, 2011, 80, 1163-1173.	2.8	29
22	Extreme environmental variation sharpens selection that drives the evolution of a mutualism. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1799-1805.	2.6	28
23	Experimental Evidence for an Eco-Evolutionary Coupling between Local Adaptation and Intraspecific Competition. American Naturalist, 2016, 187, 447-456.	2.1	27
24	The local introduction of strongly interacting species and the loss of geographic variation in species and species interactions. Molecular Ecology, 2008, 17, 395-404.	3.9	23
25	SEED PREDATION AND SELECTION EXERTED BY A SEED PREDATOR INFLUENCE SUBALPINE TREE DENSITIES. Ecology, 2008, 89, 2960-2966.	3.2	23
26	When Ecology Fails: How Reproductive Interactions Promote Species Coexistence. Trends in Ecology and Evolution, 2021, 36, 610-622.	8.7	22
27	Predator olfactory cues generate a foraging–predation trade-off through prey apprehension. Royal Society Open Science, 2016, 3, 150537.	2.4	21
28	Cone and seed trait variation in whitebark pine (Pinus albicaulis ; Pinaceae) and the potential for phenotypic selection. American Journal of Botany, 2009, 96, 1050-1054.	1.7	19
29	Past selection impacts the strength of an aquatic trophic cascade. Functional Ecology, 2018, 32, 1554-1562.	3.6	19
30	Climate extremes are associated with invertebrate taxonomic and functional composition in mountain lakes. Ecology and Evolution, 2016, 6, 8094-8106.	1.9	15
31	The consequences of mass mortality events for the structure and dynamics of biological communities. Oikos, 2019, 128, 1679-1690.	2.7	15
32	Predicting the distributions of regional endemic dragonflies using a combined model approach. Insect Conservation and Diversity, 2021, 14, 52-66.	3.0	15
33	Predators weaken prey intraspecific competition through phenotypic selection. Ecology Letters, 2020, 23, 951-961.	6.4	14
34	An ecological and evolutionary perspective on species coexistence under global change. Current Opinion in Insect Science, 2018, 29, 71-77.	4.4	13
35	Opportunistic data reveal widespread species turnover in <i>Enallagma</i> damselflies at biogeographical scales. Ecography, 2018, 41, 958-970.	4.5	12
36	Disentangling ecologically equivalent from neutral species: The mechanisms of population regulation matter. Journal of Animal Ecology, 2019, 88, 1755-1765.	2.8	12

ADAM M SIEPIELSKI

#	Article	IF	CITATIONS
37	A Possible Role for Red Squirrels in Structuring Breeding Bird Communities in Lodgepole Pine Forests. Condor, 2006, 108, 232-238.	1.6	11
38	Selection on fruit traits is mediated by the interplay between frugivorous birds, fruit flies, parasitoid wasps and seedâ€dispersing ants. Journal of Evolutionary Biology, 2020, 33, 874-886.	1.7	10
39	Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts. Evolution; International Journal of Organic Evolution, 2017, 71, 974-984.	2.3	9
40	A framework for linking competitor ecological differences to coexistence. Journal of Animal Ecology, 2019, 88, 1534-1548.	2.8	9
41	Predator driven niches vary spatially among co-occurring damselfly species. Evolutionary Ecology, 2019, 33, 243-256.	1.2	9
42	A Possible Role for Red Squirrels in Structuring Breeding Bird Communities in Lodgepole Pine Forests. Condor, 2006, 108, 232.	1.6	8
43	Species residency status affects model selection and hypothesis testing in freshwater community ecology. Freshwater Biology, 2016, 61, 1568-1579.	2.4	8
44	Tipping Points in Resource Abundance Drive Irreversible Changes in Community Structure. American Naturalist, 2018, 191, 668-675.	2.1	8
45	Bovine tuberculosis disturbs parasite functional trait composition in African buffalo. Proceedings of the United States of America, 2019, 116, 14645-14650.	7.1	8
46	Rare niches and the ecological equivalence of species. Theoretical Ecology, 2015, 8, 491-503.	1.0	4
47	Female mate preferences on highâ€dimensional shape variation for male species recognition traits. Journal of Evolutionary Biology, 2018, 31, 1239-1250.	1.7	4
48	A common measure of prey immune function is not constrained by the cascading effects of predators. Evolutionary Ecology, 2023, 37, 13-30.	1.2	4
49	Consequences of trait evolution in a multispecies system. , 2012, , 278-292.		3
50	Populationâ€level variation of digestive physiology costs of mounting an immune response in damselflies. Ecological Entomology, 2020, 45, 635-643.	2.2	3
51	Environmental Conditions during Development Affect Sexual Selection through Trait-Fitness Relationships. American Naturalist, 2022, 199, 34-50.	2.1	3
52	Response to Comment on "Precipitation drives global variation in natural selection― Science, 2018, 359, .	12.6	2
53	Insect Species Coexistence and Conservation Amidst Global Change. , 2022, , 370-377.		2
54	A role for the local environment in driving speciesâ€specific parasitism in a multiâ€host parasite system. Freshwater Biology, 2022, 67, 1571-1583.	2.4	2