Paul R Riley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7115216/publications.pdf

Version: 2024-02-01

62 4,437 29 57
papers citations h-index g-index

86 86 86 5302

86 86 86 5302 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Rapid neutrophil mobilization by VCAM-1+ endothelial cell-derived extracellular vesicles. Cardiovascular Research, 2023, 119, 236-251.	3.8	22
2	Regenerative potential of epicardium-derived extracellular vesicles mediated by conserved miRNA transfer. Cardiovascular Research, 2022, 118, 597-611.	3.8	41
3	Hooked on heart regeneration: the zebrafish guide to recovery. Cardiovascular Research, 2022, 118, 1667-1679.	3.8	15
4	Quantitative Three-Dimensional Analysis of the Lymphatic Vasculature in the Postnatal Mouse Heart. Methods in Molecular Biology, 2022, 2441, 171-181.	0.9	0
5	Mapping the developing human cardiac endothelium at single-cell resolution identifies MECOM as a regulator of arteriovenous gene expression. Cardiovascular Research, 2022, 118, 2960-2972.	3.8	24
6	Alkaline nucleoplasm facilitates contractile gene expression in the mammalian heart. Basic Research in Cardiology, 2022, 117, 17.	5.9	3
7	Three-Dimensional Visualization of Blood and Lymphatic Vessels in the Adult Zebrafish Heart by Chemical Clearing. Methods in Molecular Biology, 2022, 2475, 313-323.	0.9	0
8	Immune cells in cardiac repair and regeneration. Development (Cambridge), 2022, 149, .	2.5	16
9	Heart regeneration: beyond new muscle and vessels. Cardiovascular Research, 2021, 117, 727-742.	3.8	12
10	Scientists on the Spot: Repairing and restoring the heart. Cardiovascular Research, 2021, 117, e55-e56.	3.8	0
11	A Refined Protocol for Coronary Artery Ligation in the Neonatal Mouse. Current Protocols, 2021, 1, e66.	2.9	3
12	Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development (Cambridge), 2021, 148, .	2.5	55
13	Use of artificial intelligence to enhance phenotypic drug discovery. Drug Discovery Today, 2021, 26, 887-901.	6.4	30
14	The extracellular matrix protein agrin is essential for epicardial epithelial-to-mesenchymal transition during heart development. Development (Cambridge), 2021, 148, .	2.5	16
15	Lymphatic Clearance of Immune Cells in Cardiovascular Disease. Cells, 2021, 10, 2594.	4.1	7
16	Prrx1b restricts fibrosis and promotes $Nrg1$ -dependent cardiomyocyte proliferation during zebrafish heart regeneration. Development (Cambridge), 2021, 148, .	2.5	25
17	The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nature Reviews Cardiology, 2021, 18, 368-379.	13.7	52
18	Analysis of Placental Arteriovenous Formation Reveals New Insights Into Embryos With Congenital Heart Defects. Frontiers in Genetics, 2021, 12, 806136.	2.3	1

#	Article	IF	CITATIONS
19	Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovascular Research, 2020, 116, 1357-1371.	3.8	85
20	Mouse models of myocardial infarction: comparing permanent ligation and ischaemia-reperfusion. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	47
21	Experimental limitations of extracellular vesicle-based therapies for the treatment of myocardial infarction. Trends in Cardiovascular Medicine, 2020, 31, 405-415.	4.9	16
22	Functional Heterogeneity within the Developing Zebrafish Epicardium. Developmental Cell, 2020, 52, 574-590.e6.	7.0	48
23	Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nature Communications, 2020, 11, 600.	12.8	216
24	Runx1 promotes scar deposition and inhibits myocardial proliferation and survival during zebrafish heart regeneration. Development (Cambridge), 2020, 147, .	2.5	45
25	Model organisms at the heart of regeneration. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	22
26	Aâ€Endothelial cell derived extracellular vesicles mediate neutrophil deployment from the spleen following acute myocardial infarction. , 2019, , .		0
27	BNC1 regulates cell heterogeneity in human pluripotent stem cell derived-epicardium. Development (Cambridge), 2019, 146, .	2.5	24
28	Spatiotemporal dynamics and heterogeneity of renal lymphatics in mammalian development and cystic kidney disease. ELife, $2019, 8, .$	6.0	46
29	The ontogeny, activation and function of the epicardium during heart development and regeneration. Development (Cambridge), 2018, 145, .	2.5	73
30	The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. Journal of Clinical Investigation, 2018, 128, 3402-3412.	8.2	180
31	Heart Regeneration in the Mexican Cavefish. Cell Reports, 2018, 25, 1997-2007.e7.	6.4	81
32	Magnetic Resonance Imaging of the Regenerating Neonatal Mouse Heart. Circulation, 2018, 138, 2439-2441.	1.6	8
33	Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology. Circulation Genomic and Precision Medicine, 2018, 11, e001813.	3.6	24
34	A new "lnc―between non-coding RNA and cardiac regeneration. Cardiovascular Research, 2018, 114, 1569-1570.	3.8	5
35	Thymosin-Î ² 4: A key modifier of renal disease. Expert Opinion on Biological Therapy, 2018, 18, 185-192.	3.1	14
36	iRhom2-mediated proinflammatory signalling regulates heart repair following myocardial infarction. JCI Insight, $2018, 3, .$	5.0	13

#	Article	IF	CITATIONS
37	Aberrant developmental titin splicing and dysregulated sarcomere length in Thymosin \hat{l}^24 knockout mice. Journal of Molecular and Cellular Cardiology, 2017, 102, 94-107.	1.9	10
38	Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nature Reviews Drug Discovery, 2017, 16, 699-717.	46.4	245
39	High-Resolution Magnetic Resonance Imaging of the Regenerating Adult Zebrafish Heart. Scientific Reports, 2017, 7, 2917.	3.3	34
40	BRG1-SWI/SNF-dependent regulation of the Wt1 transcriptional landscape mediates epicardial activity during heart development and disease. Nature Communications, 2017, 8, 16034.	12.8	69
41	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
42	Aâ€Endothelium-derived extracellular vesicles promote splenic monocyte mobilisation in myocardial infarction. Heart, 2017, 103, A150.1-A150.	2.9	0
43	Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight, 2017, 2, .	5.0	75
44	Recapitulation of developmental mechanisms to revascularize the ischemic heart. JCI Insight, 2017, 2, .	5.0	46
45	Anatomy and development of the cardiac lymphatic vasculature: Its role in injury and disease. Clinical Anatomy, 2016, 29, 305-315.	2.7	28
46	Loss of endogenous thymosin \hat{l}^24 accelerates glomerular disease. Kidney International, 2016, 90, 1056-1070.	5.2	26
47	Calcium handling precedes cardiac differentiation to initiate the first heartbeat. ELife, 2016, 5, .	6.0	81
48	The Derivation of Primary Human Epicardiumâ€Derived Cells. Current Protocols in Stem Cell Biology, 2015, 35, 2C.5.1-2C.5.12.	3.0	11
49	Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature, 2015, 522, 62-67.	27.8	387
50	Thymosin \hat{l}^24 : multiple functions in protection, repair and regeneration of the mammalian heart. Expert Opinion on Biological Therapy, 2015, 15, 163-174.	3.1	27
51	Characterisation of the human embryonic and foetal epicardium during heart development. Development (Cambridge), 2015, 142, 3630-6.	2.5	41
52	Hopx and the Cardiomyocyte Parentage. Molecular Therapy, 2015, 23, 1420-1422.	8.2	8
53	Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nature Communications, 2014, 5, 4054.	12.8	35
54	Re-Activated Adult Epicardial Progenitor Cells Are a Heterogeneous Population Molecularly Distinct from Their Embryonic Counterparts. Stem Cells and Development, 2014, 23, 1719-1730.	2.1	86

#	Article	IF	CITATIONS
55	Loss of $\langle i \rangle$ Prox1 $\langle i \rangle$ in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9515-9520.	7.1	45
56	The epicardium signals the way towards heart regeneration. Stem Cell Research, 2014, 13, 683-692.	0.7	91
57	Converting Scar to Muscle in the Injured Heart. Molecular Therapy, 2012, 20, 1294-1296.	8.2	1
58	An Epicardial Floor Plan for Building and Rebuilding the Mammalian Heart. Current Topics in Developmental Biology, 2012, 100, 233-251.	2.2	26
59	Vascularizing the heart. Cardiovascular Research, 2011, 91, 260-268.	3.8	55
60	De novo cardiomyocytes from within the activated adult heart after injury. Nature, 2011, 474, 640-644.	27.8	602
61	Thymosin \hat{l}^24 facilitates epicardial neovascularization of the injured adult heart. Annals of the New York Academy of Sciences, 2010, 1194, 97-104.	3.8	90
62	Thymosin \hat{l}^24 induces adult epicardial progenitor mobilization and neovascularization. Nature, 2007, 445, 177-182.	27.8	605