Stepan Bulanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7114815/publications.pdf

Version: 2024-02-01

123 papers 4,545 citations

33 h-index 98798 67 g-index

124 all docs

124 docs citations

124 times ranked 2092 citing authors

#	Article	IF	CITATIONS
1	Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime. Physical Review Letters, 2014, 113, 245002.	7.8	767
2	Petawatt Laser Guiding and Electron Beam Acceleration to 8ÂGeV in a Laser-Heated Capillary Discharge Waveguide. Physical Review Letters, 2019, 122, 084801.	7.8	557
3	Multiple Colliding Electromagnetic Pulses: A Way to Lower the Threshold of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>e</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mi>e Production from Vacuum. Physical Review Letters. 2010. 104. 220404.</mml:mi></mml:math>	e< 7i mml:mi∶	> 219 > ₹mml:mo>{
4	Snapshots of laser wakefields. Nature Physics, 2006, 2, 749-753.	16.7	196
5	Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. Physical Review E, 2008, 78, 026412.	2.1	160
6	Schwinger Limit Attainability with Extreme Power Lasers. Physical Review Letters, 2010, 105, 220407.	7.8	154
7	Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams. Physical Review Letters, 2015, 115, 184802.	7.8	147
8	-pair production by a focused laser pulse in vacuum. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 330, 1-6.	2.1	146
9	Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses. Physical Review A, 2013, 87, .	2.5	110
10	Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses. Medical Physics, 2008, 35, 1770-1776.	3.0	101
11	Strong Radiation-Damping Effects in a Gamma-Ray Source Generated by the Interaction of a High-Intensity Laser with a Wakefield-Accelerated Electron Beam. Physical Review X, 2012, 2, .	8.9	88
12	Electron-positron pair production by electromagnetic pulses. Journal of Experimental and Theoretical Physics, 2006, 102, 9-23.	0.9	83
13	Relativistic plasma physics in supercritical fields. Physics of Plasmas, 2020, 27, .	1.9	81
14	Electron dynamics and mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>γ</mml:mi> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>by colliding laser pulses. Physical Review E, 2016, 93, 023207.</mml:mo></mml:msup></mml:mrow></mml:math>	> 2.1 >a <td>.74 mo></td>	.74 mo>
15	On e + e â^' pair production by colliding electromagnetic pulses. JETP Letters, 2004, 80, 382-385.	1.4	57
16	High-power, kilojoule laser interactions with near-critical density plasma. Physics of Plasmas, 2011, 18,	1.9	57
17	Modeling classical and quantum radiation from laser-plasma accelerators. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .	1.8	54
18	Pair production by a circularly polarized electromagnetic wave in a plasma. Physical Review E, 2004, 69, 036408.	2.1	53

#	Article	IF	CITATIONS
19	Benchmarking semiclassical approaches to strong-field QED: Nonlinear Compton scattering in intense laser pulses. Physics of Plasmas, 2018, 25, .	1.9	53
20	ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications. Quantum Beam Science, 2018, 2, 8.	1.2	49
21	Radiation pressure acceleration: The factors limiting maximum attainable ion energy. Physics of Plasmas, 2016, 23, .	1.9	48
22	Depletion of Intense Fields. Physical Review Letters, 2017, 118, 154803.	7.8	46
23	Damping of electromagnetic waves due to electron-positron pair production. Physical Review E, 2005, 71, 016404.	2.1	43
24	Formation of Optical Bullets in Laser-Driven Plasma Bubble Accelerators. Physical Review Letters, 2010, 104, 134801.	7.8	42
25	Laser-heater assisted plasma channel formation in capillary discharge waveguides. Physics of Plasmas, 2013, 20, 020703.	1.9	42
26	Nonuniform discharge currents in active plasma lenses. Physical Review Accelerators and Beams, 2017, 20, .	1.6	40
27	Demonstration of a high repetition rate capillary discharge waveguide. Journal of Applied Physics, 2016, 119, .	2.5	39
28	Thermal emittance from ionization-induced trapping in plasma accelerators. Physical Review Special Topics: Accelerators and Beams, 2014, 17, .	1.8	37
29	Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures. Physical Review E, 2006, 73, 036408.	2.1	36
30	Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets. Physics of Plasmas, 2009, 16 , .	1.9	36
31	Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator	1.9	36
32	Studies of laser wakefield structures and electron acceleration in underdense plasmas. Physics of Plasmas, 2008, 15, 056703.	1.9	35
33	Laser-Particle Collider for Multi-GeV Photon Production. Physical Review Letters, 2019, 122, 254801.	7.8	35
34	Control of Energy Spread and Dark Current in Proton and Ion Beams Generated in High-Contrast Laser Solid Interactions. Physical Review Letters, 2011, 107, 065003.	7.8	33
35	Strong field electrodynamics of a thin foil. Physics of Plasmas, 2013, 20, 123114.	1.9	33
36	lon acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability. Physics of Plasmas, 2012, 19, .	1.9	32

#	Article	IF	Citations
37	Enhancement of Maximum Attainable Ion Energy in the Radiation Pressure Acceleration Regime Using a Guiding Structure. Physical Review Letters, 2015, 114, 105003.	7.8	32
38	High-efficiency <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\hat{l}^3</mml:mi></mml:math> -ray flash generation via multiple-laser scattering in ponderomotive potential well. Physical Review E, 2017, 95, 013210.	2.1	32
39	Ion acceleration in laser generated megatesla magnetic vortex. Physics of Plasmas, 2019, 26, .	1.9	32
40	Relativistic plasma shutter for ultraintense laser pulses. Applied Physics Letters, 2009, 94, 201117.	3.3	31
41	Optimized laser pulse profile for efficient radiation pressure acceleration of ions. Physics of Plasmas, 2012, 19, 093112.	1.9	29
42	Electron injection and emittance control by transverse colliding pulses in a laser-plasma accelerator. Physical Review Special Topics: Accelerators and Beams, 2014, 17, .	1.8	29
43	Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy. Physical Review Special Topics: Accelerators and Beams, 2015, 18, .	1.8	28
44	Ensemble of ultra-high intensity attosecond pulses from laser–plasma interaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 476-480.	2.1	25
45	Stimulated Raman Side Scattering in Laser Wakefield Acceleration. Physical Review Letters, 2010, 105, 034801.	7.8	24
46	Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications. Physics of Plasmas, 2017, 24, .	1.9	24
47	Relativistic spherical plasma waves. Physics of Plasmas, 2012, 19, 020702.	1.9	23
48	A new platform for ultra-high dose rate radiobiological research using the BELLA PW laser proton beamline. Scientific Reports, 2022, 12, 1484.	3.3	23
49	On the breaking of a plasma wave in a thermal plasma. I. The structure of the density singularity. Physics of Plasmas, 2012, 19, .	1.9	22
50	High contrast ion acceleration at intensities exceeding 1021 Wcmâ^'2. Physics of Plasmas, 2013, 20, .	1.9	21
51	Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV. Physics of Plasmas, 2020, 27, 053102.	1.9	21
52	Acceleration of high charge ion beams with achromatic divergence by petawatt laser pulses. Physical Review Accelerators and Beams, 2020, 23, .	1.6	21
53	Holographic visualization of laser wakefields. New Journal of Physics, 2010, 12, 045016.	2.9	20
54	Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns. Journal of Plasma Physics, 2017, 83, .	2.1	20

#	Article	IF	Citations
55	On the breaking of a plasma wave in a thermal plasma. II. Electromagnetic wave interaction with the breaking plasma wave. Physics of Plasmas, 2012, 19, 113103.	1.9	17
56	Radiation beaming in the quantum regime. Physical Review A, 2020, 101, .	2.5	17
57	Multiple colliding laser pulses as a basis for studying high-field high-energy physics. Physical Review A, 2019, 100, .	2.5	15
58	Synergic Cherenkov-Compton radiation. Physical Review D, 2019, 100, .	4.7	14
59	Plasma equilibrium inside various cross-section capillary discharges. Physics of Plasmas, 2017, 24, .	1.9	14
60	Z lineshape versus fourth-generation masses. Physics of Atomic Nuclei, 2003, 66, 2169-2177.	0.4	13
61	Relativisitcally upshifted higher harmonic generation via relativistic flying mirrors. Plasma Physics and Controlled Fusion, 2018, 60, 074007.	2.1	12
62	Nonlinear evolution of a relativistically strong electromagnetic wave in self-created electron-positron plasma. JETP Letters, 2004, 80, 734-738.	1.4	11
63	Radiation reaction effects in cascade scattering of intense, tightly focused laser pulses by relativistic electrons: Classical approach. Physical Review Special Topics: Accelerators and Beams, 2014, 17, .	1.8	11
64	Stochastic regimes in the driven oscillator with a step-like nonlinearity. Physics of Plasmas, 2015, 22, .	1.9	11
65	Attosecond electromagnetic pulse generation due to the interaction of a relativistic soliton with a breaking-wake plasma wave. Physical Review E, 2005, 71, 036404.	2.1	10
66	Electromagnetic pulse reflection at self-generated plasma mirrors: Laser pulse shaping and high order harmonic generation. Physics of Plasmas, 2007, 14, 093105.	1.9	9
67	Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration. Physics of Plasmas, 2020, 27, .	1.9	9
68	High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets. Applied Physics Letters, 2013, 103, 141117.	3.3	8
69	Radial density profile and stability of capillary discharge plasma waveguides of lengths up to 40 cm. High Power Laser Science and Engineering, 2021, 9, .	4.6	8
70	Nonlinear generation of ultra-short electromagnetic pulses in plasmas. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 337, 107-111.	2.1	6
71	On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas. Physics of Plasmas, 2017, 24, 123120.	1.9	6
72	Explosive plasma-vortex source of optical emission. Technical Physics Letters, 2008, 34, 34-36.	0.7	5

#	Article	IF	CITATIONS
73	Extreme field science. Plasma Physics and Controlled Fusion, 2011, 53, 124025.	2.1	5
74	On the design of experiments to study extreme field limits. , 2013, , .		5
75	WarpIV: In Situ Visualization and Analysis of Ion Accelerator Simulations. IEEE Computer Graphics and Applications, 2016, 36, 22-35.	1.2	5
76	Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration scheme. New Journal of Physics, 2019, 21, 103005.	2.9	5
77	Reaching high laser intensity by a radiating electron. Physical Review A, 2021, 103, .	2.5	5
78	Self-guided laser wakefield acceleration using ablated plasma targets. Plasma Physics and Controlled Fusion, 2009, 51, 095003.	2.1	4
79	Tailored laser pulse chirp to maintain optimum radiation pressure acceleration of ions. Physics of Plasmas, 2019, 26, 023103.	1.9	4
80	Dynamics of moving electron vortices and magnetic ring in laser plasma interaction. Physics of Plasmas, 2021, 28, 042303.	1.9	4
81	Creation of an axially uniform plasma channel in a laser-assisted capillary discharge. Physics of Plasmas, 2021, 28, .	1.9	4
82	Plasma channel formation in the knife-like focus of laser beam. Journal of Plasma Physics, 2020, 86, .	2.1	3
83	Snapshots of Laser-Generated Wakefields. AIP Conference Proceedings, 2006, , .	0.4	2
84	Laser wakefield acceleration experiments at the University of Michigan. , 2009, , .		2
85	Formation of Optical Bullets in Laser-Driven Plasma Bubble Accelerators. , 2010, , .		2
86	Using transverse colliding-pulse injection to obtain electron beams with small emittance in a laser-plasma accelerator. , 2013 , , .		2
87	Ultra-low emittance beam generation using two-color ionization injection in laser-plasma accelerators. , 2015, , .		2
88	Maximum attainable ion energy in the radiation pressure acceleration regime. Proceedings of SPIE, $2015, \ldots$	0.8	2
89	Cryogenically formed discharge waveguide. Physical Review Accelerators and Beams, 2021, 24, .	1.6	2
90	Proton Acceleration to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses. AIP Conference Proceedings, 2006, , .	0.4	1

#	Article	IF	CITATIONS
91	Publisher's Note: Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures [Phys. Rev. E73, 036408 (2006)]. Physical Review E, 2006, 73, .	2.1	1
92	Proton acceleration from thin foils using ultraintense, high-contrast pulses., 2007,,.		1
93	Laser Wakefield Acceleration Experiments Using HERCULES Laser. , 2009, , .		1
94	Swarm of ultra-high intensity attosecond pulses from laser-plasma interaction. Journal of Physics: Conference Series, 2010, 244, 022029.	0.4	1
95	Visualization of plasma bubble accelerators using Frequency-Domain Shadowgraphy. High Energy Density Physics, 2010, 6, 153-156.	1.5	1
96	Extreme field limits in the interaction of laser light with ultrarelativistic electrons., 2012,,.		1
97	Advanced geometries and regimes. , 2013, , .		1
98	On electron betatron motion and electron injection in laser wakefield accelerators. Plasma Physics and Controlled Fusion, 2014, 56, 084009.	2.1	1
99	Laser-driven helium ion acceleration for hadron therapy. AIP Conference Proceedings, 2016, , .	0.4	1
100	Electromagnetic cascade: High-energy electron beam collisions with intense laser pulses. AIP Conference Proceedings, $2016, , .$	0.4	1
101	INF&RNO Modeling of 10 GeV-Class Electron Beams from a Laser-Plasma Accelerator Driven by the BELLA Laser. , $2018, , .$		1
102	Target normal sheath acceleration with a large laser focal diameter. Physics of Plasmas, 2020, 27, .	1.9	1
103	CP violation in K S, L → Ï€ + Ï€ â~' γ and K S, L → Ï€ + Ï€ â~' e + e â~' decays. Physics of Atomic Nuclei, 2004, 67, 3	1 d.3 27.	0
104	Laser Wakefield Acceleration of High-Quality Electron Beams to 300 MeV and Efficient Initiation of Photonuclear Reactions. AIP Conference Proceedings, 2006, , .	0.4	0
105	Self-consistent propagation of an ultraintense e.m. wave in an electron-positron plasma. AIP Conference Proceedings, 2006, , .	0.4	0
106	Single-shot, real-time measurement of laser wakefields using frequency domain holography (FDH). , 2006, , .		0
107	Acceleration of quasi-monochromatic electron beams in laser wakefield to 300 Mev and initiation of photonuclear reactions., 2006,,.		O
108	Proton Acceleration from Thin Foils Using Ultraintense, High-Contrast Pulses., 2007,,.		0

#	Article	IF	Citations
109	Guiding and Ionization Blueshift in Ablative Capillary Waveguide Accelerators. , 2009, , .		О
110	Control of proton energy in ultra-high intensity laser-matter interaction. Journal of Physics: Conference Series, 2010, 244, 042025.	0.4	0
111	Laser-driven ion acceleration in the radiation pressure dominated regime. , 2013, , .		0
112	The applicability range of different forms of the radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions). Journal of Physics: Conference Series, 2013, 414, 012009.	0.4	0
113	Optimized laser pulse profile for efficient radiation pressure acceleration of ions. , 2013, , .		O
114	Multi-GeV experiments with the Petawatt class BELLA laser. , 2015, , .		0
115	Increasing the repetition rate of capillary discharge waveguides. AIP Conference Proceedings, 2016, , .	0.4	0
116	Laser-assisted capillary discharge for enhanced guiding of tightly focused laser pulses at low densities. Proceedings of SPIE, 2017, , .	0.8	0
117	Summary report of working group 6: Laser-plasma acceleration of ions. AIP Conference Proceedings, 2017, , .	0.4	0
118	Depletion of intense fields. AIP Conference Proceedings, 2017, , .	0.4	0
119	Strong field electrodynamics of a thin foil. AIP Conference Proceedings, 2017, , .	0.4	0
120	Formation of Optical Bullets in Laser-driven Plasma Bubble Accelerators. , 2010, , .		0
121	Observation of Optical Bullets formed in Laser-driven Plasma Bubble Accelerators. , 2010, , .		0
122	SU-GG-T-462: Observation of Quasi-Monoenergetic Laser Accelerated Proton and Carbon Beams. Medical Physics, 2010, 37, 3293-3293.	3.0	0
123	Extreme Field Limits in the Ultra-Relativistic Interaction of Electromagnetic Waves with Plasmas. Springer Proceedings in Physics, 2011, , 151-181.	0.2	O