
Kyriakos D Papadopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7113955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time-dependence of asphaltene dispersion by marine cylinder lubricants (MCL) surfactants. Journal of Dispersion Science and Technology, 2022, 43, 61-69.	2.4	Ο
2	Direct visualization of oil degradation and biofilm formation for the screening of crude oil-degrading bacteria. Bioremediation Journal, 2020, 24, 60-70.	2.0	8
3	Temperature and Salting out Effects on Nicotine Dissolution Kinetics in Saline Solutions. ACS Omega, 2020, 5, 7738-7744.	3.5	4
4	Mobilization of Crude Oil in Porous Media With Oil-Soluble Surfactant Delivered by Hydrosoluble Micelles. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	2.3	5
5	Ethanol's effects on acid neutralization by motor oils. Tribology International, 2019, 132, 24-29.	5.9	5
6	Degradation of Macondo 252 oil by endophytic Pseudomonas putida. Journal of Environmental Chemical Engineering, 2018, 6, 643-648.	6.7	22
7	Mobilization of n-hexadecane in porous media using food grade amphiphiles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 123-129.	4.7	6
8	Neutralization Mechanism of Acetic Acid by Overbased Colloidal Nanoparticles. Tribology Letters, 2016, 64, 1.	2.6	8
9	Neutralization of acetic acid by automobile motor oil. Tribology International, 2016, 98, 94-99.	5.9	6
10	Filamentous Escherichia coli cells swimming in tapered microcapillaries. Research in Microbiology, 2014, 165, 166-174.	2.1	8
11	Formation of Colloidal Shells on Acidic Droplets Undergoing Neutralization in Marine Diesel Engine Cylinder Oils. Tribology Letters, 2013, 51, 85-92.	2.6	7
12	Video microscopic high-temperature measurement of surface tension. Journal of Colloid and Interface Science, 2013, 395, 249-255.	9.4	3
13	Visualization and quantification of two-phase flow in transparent miniature packed beds. Physical Review E, 2012, 86, 046313.	2.1	11
14	Marine Oil Fate: Knowledge Gaps, Basic Research, and Development Needs; A Perspective Based on the Deepwater Horizon Spill. Environmental Engineering Science, 2011, 28, 87-93.	1.6	80
15	Vertically-Oriented-Capillary Video-Microscopy: Drops Levitated by a (Reacting) Fluid. Industrial & Engineering Chemistry Research, 2011, 50, 14142-14147.	3.7	9
16	Dissolution Kinetics of [Hmim][BF ₄] Ionic Liquid Droplets in 1-Pentanol. Journal of Physical Chemistry C, 2009, 113, 16458-16463.	3.1	10
17	Ostwald ripening: a decisive cause of cylinder corrosive wear. Tribology Letters, 2007, 27, 21-24.	2.6	12
18	Acid Neutralization by Marine Cylinder Lubricants Inside a Heating Capillary:  Strong/Weak-Stick	3.7	19

¹⁸ Collision Mechanisms. Industrial & amp; Engineering Chemistry Research, 2006, 45, 5619-5627.

Kyriakos D Papadopoulos

#	Article	IF	CITATIONS
19	Temperature and acid droplet size effects in acid neutralization of marine cylinder lubricants. Tribology Letters, 2006, 22, 221-225.	2.6	11
20	AFM of Iron Oxide Particles Attachment on Mica. Journal of Dispersion Science and Technology, 2005, 25, 861-868.	2.4	0
21	Optical Microscopy inside a Heating Capillary. Industrial & Engineering Chemistry Research, 2005, 44, 1199-1203.	3.7	11
22	Internal Coalescence as a Mechanism of Instability in Water-in-Oil-in-Water Double-Emulsion Globules. Langmuir, 2003, 19, 244-249.	3.5	57
23	Yield Stress Measurement of Silicon Nitride Suspensions. Canadian Journal of Chemical Engineering, 2002, 80, 1175-1180.	1.7	4
24	A slotted plate device for measuring static yield stress. Journal of Rheology, 2001, 45, 1105-1122.	2.6	85
25	A method for measuring bacterial chemotaxis parameters in a microcapillary. , 2000, 51, 120-125.		18
26	Acid-neutralizing of marine cylinder lubricants: Measurements and effects of dispersants. AICHE Journal, 2000, 46, 1471-1477.	3.6	19
27	Acid-Neutralizing of Marine Cylinder Lubricants:  Effects of Nonionic Surfactants. Industrial & Engineering Chemistry Research, 2000, 39, 3926-3931.	3.7	23
28	Effects of Surfactants on Water Transport in W1/O/W2Emulsions. Langmuir, 2000, 16, 7612-7617.	3.5	57
29	Electrokinetic movement of Escherichia coli in capillaries. Environmental Microbiology, 1999, 1, 99-102.	3.8	17
30	Visualization test for neutralization of acids by marine cylinder lubricants. AICHE Journal, 1999, 45, 2011-2017.	3.6	20
31	Deposition of Oil-in-Water Emulsions in Sand Beds in the Presence of Cetyltrimethylammonium Bromide. Environmental Science & Technology, 1997, 31, 1040-1045.	10.0	12
32	Bacterial motility, collisions, and aggregation in a 3-μm-diameter capillary. , 1997, 53, 238-241.		14
33	Electrokinetic Movement of Settled Spherical Particles in Fine Capillaries. Environmental Science & Technology, 1996, 30, 1176-1179.	10.0	20
34	A method for measuring bacterial chemotaxis parameters in a microcapillary. Biotechnology and Bioengineering, 1996, 51, 120-125.	3.3	9
35	DISSIMILAR COLLOIDAL DOUBLE-LAYER INTERACTIONS: A NEW APPROACH. Chemical Engineering Communications, 1985, 34, 335-348.	2.6	0
36	Visualization of Stability and Transport in Double Emulsions. , 0, , 45-65.		0

Visualization of Stability and Transport in Double Emulsions. , 0, , 45-65. 36

3