
Michael Kohlhase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7113728/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Big Math and the One-Brain Barrier: The Tetrapod Model of Mathematical Knowledge. Mathematical Intelligencer, 2021, 43, 78-87.	0.1	6
2	Experiences from Exporting Major Proof Assistant Libraries. Journal of Automated Reasoning, 2021, 65, 1265-1298.	1.1	3
3	Representing Structural Language Features in Formal Meta-languages. Lecture Notes in Computer Science, 2020, , 206-221.	1.0	3
4	TGView3D: A System for 3-Dimensional Visualization of Theory Graphs. Lecture Notes in Computer Science, 2020, , 290-296.	1.0	1
5	FramelT: Detangling Knowledge Management from Game Design in Serious Games. Lecture Notes in Computer Science, 2020, , 173-189.	1.0	Ο
6	Logic-Independent Proof Search inÂLogical Frameworks. Lecture Notes in Computer Science, 2020, , 395-401.	1.0	2
7	(Deep) FAIR mathematics. IT - Information Technology, 2020, 62, 7-17.	0.6	2
8	Towards a Unified Mathematical Data Infrastructure: Database and Interface Generation. Lecture Notes in Computer Science, 2019, , 28-43.	1.0	3
9	Integrating Semantic Mathematical Documents and Dynamic Notebooks. Lecture Notes in Computer Science, 2019, , 275-290.	1.0	0
10	Relational Data Across Mathematical Libraries. Lecture Notes in Computer Science, 2019, , 61-76.	1.0	4
11	Model pathway diagrams for the representation of mathematical models. Optical and Quantum Electronics, 2018, 50, 1.	1.5	3
12	Theories as Types. Lecture Notes in Computer Science, 2018, , 575-590.	1.0	8
13	Discourse Phenomena in Mathematical Documents. Lecture Notes in Computer Science, 2018, , 147-163.	1.0	5
14	Translating the IMPS Theory Library to MMT/OMDoc. Lecture Notes in Computer Science, 2018, , 7-22.	1.0	2
15	Knowledge Amalgamation forÂComputational Science andÂEngineering. Lecture Notes in Computer Science, 2018, , 232-247.	1.0	1
16	Automatically Finding Theory Morphisms for Knowledge Management. Lecture Notes in Computer Science, 2018, , 209-224.	1.0	0
17	Mathematical Models as Research Data viaÂFlexiformal Theory Graphs. Lecture Notes in Computer Science, 2017, , 224-238.	1.0	6
18	Classification of Alignments Between Concepts of Formal Mathematical Systems. Lecture Notes in Computer Science, 2017, , 83-98.	1.0	10

#	Article	IF	CITATIONS
19	Software Citations, Information Systems, and Beyond. Lecture Notes in Computer Science, 2017, , 99-114.	1.0	Ο
20	Visual Structure in Mathematical Expressions. Lecture Notes in Computer Science, 2017, , 208-223.	1.0	2
21	Mathematical models as research data in numerical simulation of opto-electronic devices. , 2017, , .		О
22	Making PVS Accessible to Generic Services byÂlnterpretation in a Universal Format. Lecture Notes in Computer Science, 2017, , 319-335.	1.0	6
23	Knowledge-Based Interoperability for Mathematical Software Systems. Lecture Notes in Computer Science, 2017, , 195-210.	1.0	5
24	Virtual Theories – A Uniform Interface to Mathematical Knowledge Bases. Lecture Notes in Computer Science, 2017, , 243-257.	1.0	5
25	Interoperability in the OpenDreamKit Project: The Math-in-the-Middle Approach. Lecture Notes in Computer Science, 2016, , 117-131.	1.0	13
26	Faceted Search for Mathematics. Lecture Notes in Computer Science, 2016, , 406-420.	1.0	0
27	Math Literate Knowledge Management via Induced Material. Lecture Notes in Computer Science, 2015, , 187-202.	1.0	1
28	Discourse-Level Parallel Markup and Meaning Adoption in Flexiformal Theory Graphs. Lecture Notes in Computer Science, 2014, , 36-40.	1.0	0
29	Realms: A Structure for Consolidating Knowledge about Mathematical Theories. Lecture Notes in Computer Science, 2014, , 252-266.	1.0	10
30	Flexary Operators for Formalized Mathematics. Lecture Notes in Computer Science, 2014, , 312-327.	1.0	7
31	System Description: MathHub.info. Lecture Notes in Computer Science, 2014, , 431-434.	1.0	4
32	Representing, Archiving, and Searching the Space of Mathematical Knowledge. Lecture Notes in Computer Science, 2014, , 26-30.	1.0	2
33	The Mizar Mathematical Library in OMDoc: Translation and Applications. Journal of Automated Reasoning, 2013, 50, 191-202.	1.1	39
34	A scalable module system. Information and Computation, 2013, 230, 1-54.	0.5	69
35	Mashups Using Mathematical Knowledge. , 2013, , 171-204.		0
36	A Universal Machine for Biform Theory Graphs. Lecture Notes in Computer Science, 2013, , 82-97.	1.0	2

#	Article	IF	CITATIONS
37	Full Semantic Transparency: Overcoming Boundaries of Applications. Lecture Notes in Computer Science, 2013, , 406-423.	1.0	1
38	Reasoning without believing: on the mechanisation of presuppositions and partiality. Journal of Applied Non-Classical Logics, 2012, 22, 295-317.	0.4	0
39	The Flexiformalist Manifesto. , 2012, , .		12
40	Towards Logical Frameworks in the Heterogeneous Tool Set Hets. Lecture Notes in Computer Science, 2012, , 139-159.	1.0	13
41	Semantics of OpenMath and MathML3. Mathematics in Computer Science, 2012, 6, 235-260.	0.2	10
42	Bringing Mathematics to the Web of Data: The Case of the Mathematics Subject Classification. Lecture Notes in Computer Science, 2012, , 763-777.	1.0	13
43	MathWebSearch 0.5: Scaling an Open Formula Search Engine. Lecture Notes in Computer Science, 2012, , 342-357.	1.0	16
44	The Planetary Project: Towards eMath3.0. Lecture Notes in Computer Science, 2012, , 448-452.	1.0	4
45	Reimplementing the Mathematics Subject Classification (MSC) as a Linked Open Dataset. Lecture Notes in Computer Science, 2012, , 458-462.	1.0	5
46	Semantic Alliance: A Framework for Semantic Allies. Lecture Notes in Computer Science, 2012, , 49-64.	1.0	4
47	A Proof Theoretic Interpretation of Model Theoretic Hiding. Lecture Notes in Computer Science, 2012, , 118-138.	1.0	1
48	The Planetary System: Web 3.0 & Active Documents for STEM. Procedia Computer Science, 2011, 4, 598-607.	1.2	21
49	Towards a flexible notion of document context. , 2011, , .		2
50	Maintaining islands of consistency via versioned links. , 2011, , .		0
51	Licensing the Mizar Mathematical Library. Lecture Notes in Computer Science, 2011, , 149-163.	1.0	16
52	Workflows for the Management of Change in Science, Technologies, Engineering and Mathematics. Lecture Notes in Computer Science, 2011, , 164-179.	1.0	4
53	Project Abstract: Logic Atlas and Integrator (LATIN). Lecture Notes in Computer Science, 2011, , 289-291.	1.0	30
54	The Planetary System: Executable Science, Technology, Engineering and Math Papers. Lecture Notes in Computer Science, 2011, , 471-475.	1.0	0

#	Article	IF	CITATIONS
55	Combining Source, Content, Presentation, Narration, and Relational Representation. Lecture Notes in Computer Science, 2011, , 212-227.	1.0	7
56	Transforming Large Collections of Scientific Publications to XML. Mathematics in Computer Science, 2010, 3, 299-307.	0.2	23
57	STEX+., 2010, , .		11
58	Publishing Math Lecture Notes as Linked Data. Lecture Notes in Computer Science, 2010, , 370-375.	1.0	16
59	Towards MKM in the Large: Modular Representation and Scalable Software Architecture. Lecture Notes in Computer Science, 2010, , 370-384.	1.0	8
60	Dimensions of Formality: A Case Study for MKM in Software Engineering. Lecture Notes in Computer Science, 2010, , 355-369.	1.0	1
61	An Integrated Development Environment for Collections. Lecture Notes in Computer Science, 2010, , 336-344.	1.0	1
62	Context-Aware Adaptation: A Case Study On Mathematical Notations. Information Systems Management, 2009, 26, 215-230.	3.2	0
63	Modeling task experience in user assistance systems. , 2009, , .		3
64	Semantic transparency in user assistance systems. , 2009, , .		9
65	Applying Semantic Techniques to Search and Analyze Bug Tracking Data. Journal of Network and Systems Management, 2009, 17, 285-308.	3.3	13
66	Unifying Math Ontologies: A Tale of Two Standards. Lecture Notes in Computer Science, 2009, , 263-278.	1.0	6
67	Spreadsheet Interaction with Frames: Exploring a Mathematical Practice. Lecture Notes in Computer Science, 2009, , 341-356.	1.0	6
68	Compensating the Computational Bias of Spreadsheets with MKM Techniques. Lecture Notes in Computer Science, 2009, , 357-372.	1.0	7
69	A Mathematical Approach to Ontology Authoring and Documentation. Lecture Notes in Computer Science, 2009, , 389-404.	1.0	10
70	Formal Management of CAD/CAM Processes. Lecture Notes in Computer Science, 2009, , 223-238.	1.0	4
71	Cut-Simulation and Impredicativity. Logical Methods in Computer Science, 2009, 5, .	0.4	3
72	Using as a Semantic Markup Format. Mathematics in Computer Science, 2008, 2, 279-304.	0.2	38

#	Article	IF	CITATIONS
73	Notations for Living Mathematical Documents. Lecture Notes in Computer Science, 2008, , 504-519.	1.0	12
74	Towards a Community of Practice Toolkit Based on Semantically Marked Up Artifacts. Lecture Notes in Computer Science, 2008, , 41-50.	1.0	1
75	SWiM. , 2008, , 47-68.		7
76	Reexamining the MKM Value Proposition: From Math Web Search to Math Web ReSearch. Lecture Notes in Computer Science, 2007, , 313-326.	1.0	7
77	Extended Formula Normalization for ε-Retrieval and Sharing of Mathematical Knowledge. Lecture Notes in Computer Science, 2007, , 356-370.	1.0	8
78	A Search Engine for Mathematical Formulae. Lecture Notes in Computer Science, 2006, , 241-253.	1.0	79
79	Capturing the Content of Physics: Systems, Observables, and Experiments. Lecture Notes in Computer Science, 2006, , 165-178.	1.0	7
80	Communities of Practice in MKM: An Extensional Model. Lecture Notes in Computer Science, 2006, , 179-193.	1.0	7
81	Cut-Simulation in Impredicative Logics. Lecture Notes in Computer Science, 2006, , 220-234.	1.0	1
82	An Exploration in the Space of Mathematical Knowledge. Lecture Notes in Computer Science, 2006, , 17-32.	1.0	4
83	A Development Graph for Elementary Algebra. Lecture Notes in Computer Science, 2006, , 59-63.	1.0	1
84	Higher-order semantics and extensionality. Journal of Symbolic Logic, 2004, 69, 1027-1088.	0.4	65
85	CPoint: Dissolving the Author's Dilemma. Lecture Notes in Computer Science, 2004, , 175-189.	1.0	7
86	System Description: The MathWeb Software Bus for Distributed Mathematical Reasoning. Lecture Notes in Computer Science, 2002, , 139-143.	1.0	7
87	MBase: Representing Knowledge and Context for the Integration of Mathematical Software Systems. Journal of Symbolic Computation, 2001, 32, 365-402.	0.5	39
88	OMDoc: Towards an Internet Standard for the Administration, Distribution, and Teaching of Mathematical Knowledge. Lecture Notes in Computer Science, 2001, , 32-52.	1.0	33
89	Inference and Computational Semantics. Studies in Linguistics and Philosophy, 2001, , 11-28.	0.0	14
90	Managing Structural Information by Higher-Order Colored Unification. , 2000, 25, 123-164.		5

Managing Structural Information by Higher-Order Colored Unification. , 2000, 25, 123-164. 90

6

#	Article	IF	CITATIONS
91	OMDoc. SIGSAM Bulletin: A Quarterly Publication of the Special Interest Group on Symbolic & Algebraic Manipulation, 2000, 34, 43-48.	0.3	17
92	Higher-Order Multi-Valued Resolution. Journal of Applied Non-Classical Logics, 1999, 9, 455-477.	0.4	2
93	MBase: Representing mathematical Knowledge in a Relational Data Base. Electronic Notes in Theoretical Computer Science, 1999, 23, 451-468.	0.9	0
94	L Ω UI : L ovely ΩMEGA U ser I nterface. Formal Aspects of Computing, 1999, 11, 326-342.	1.4	28
95	System Description: MathWeb, an Agent-Based Communication Layer for Distributed Automated Theorem Proving. Lecture Notes in Computer Science, 1999, , 217-221.	1.0	23
96	Integrating Computer Algebra into Proof Planning. Journal of Automated Reasoning, 1998, 21, 327-355.	1.1	41
97	System description: Leo — A higher-order theorem prover. Lecture Notes in Computer Science, 1998, , 139-143.	1.0	27
98	\hat{I} ©mega: Towards a mathematical assistant. Lecture Notes in Computer Science, 1997, , 252-255.	1.0	60
99	Die Beweisentwicklungsumgebung \$Omega\$ -M krp. Computer Science - Research and Development, 1996, 11, 20-26.	0.9	1
100	A Tableau Calculus for Partial Functions. Journal of Zoological Systematics and Evolutionary Research, 1996, , 21-49.	0.6	6
101	Higher-order tableaux. Lecture Notes in Computer Science, 1995, , 294-309.	1.0	13
102	A mechanization of strong Kleene logic for partial functions. Lecture Notes in Computer Science, 1994, , 371-385.	1.0	16
103	Unification in a sorted λ-calculus with term declarations and function sorts. Lecture Notes in Computer Science, 1994, , 331-342.	1.0	0
104	Unification in order-sorted type theory. , 1992, , 421-432.		5
105	GF + MMT = GLF – From Language to Semantics through LF. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 307, 24-39.	0.8	3
106	TNTBase: Versioned Storage for XML. Balisage Series on Markup Technologies, 0, , .	0.0	5
107	Scripting Documents with XQuery: Virtual Documents in TNTBase. Balisage Series on Markup Technologies, 0, , .	0.0	1