Kassa Semagn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/711231/publications.pdf

Version: 2024-02-01

76 papers 4,742 citations

147801 31 h-index 106344 65 g-index

77 all docs

77 docs citations

times ranked

77

4707 citing authors

#	Article	IF	CITATIONS
1	Genomic Predictions for Common Bunt, FHB, Stripe Rust, Leaf Rust, and Leaf Spotting Resistance in Spring Wheat. Genes, 2022, 13, 565.	2.4	13
2	Comparison of single-trait and multi-trait genomic predictions on agronomic and disease resistance traits in spring wheat. Theoretical and Applied Genetics, 2022, 135, 2747-2767.	3.6	4
3	Genomic Prediction Accuracy of Stripe Rust in Six Spring Wheat Populations by Modeling Genotype by Environment Interaction. Plants, 2022, 11, 1736.	3.5	3
4	Physical Mapping of QTL in Four Spring Wheat Populations under Conventional and Organic Management Systems. I. Earliness. Plants, 2021, 10, 853.	3.5	13
5	Analysis of unigenes involved in lateral root development in Bupleurum chinense and B. scorzonerifolium. Planta, 2021, 253, 128.	3.2	7
6	Phenotypic performance and associated QTL of ‬Peace' × ‬CDC Stanley' mapping population under conventional and organic management systems. Crop Science, 2021, 61, 3469-3483.	1.8	8
7	Physical mapping of QTL associated with agronomic and end-use quality traits in spring wheat under conventional and organic management systems. Theoretical and Applied Genetics, 2021, 134, 3699-3719.	3.6	23
8	Genome-based prediction of agronomic traits in spring wheat under conventional and organic management systems. Theoretical and Applied Genetics, 2021, 135, 537.	3.6	10
9	Genetic diversity and selective sweeps in historical and modern Canadian spring wheat cultivars using the 90K SNP array. Scientific Reports, 2021, 11, 23773.	3.3	10
10	Comparisons of sampling methods for assessing intra- and inter-accession genetic diversity in three rice species using genotyping by sequencing. Scientific Reports, 2020, 10, 13995.	3.3	13
11	Comparison of Weighted and Unweighted Stageâ€Wise Analysis for Genomeâ€Wide Association Studies and Genomic Selection. Crop Science, 2019, 59, 2572-2584.	1.8	9
12	Molecular diversity and selective sweeps in maize inbred lines adapted to African highlands. Scientific Reports, 2019, 9, 13490.	3.3	14
13	Mapping QTL Associated with Stripe Rust, Leaf Rust, and Leaf Spotting in a Canadian Spring Wheat Population. Crop Science, 2019, 59, 650-658.	1.8	15
14	Comparisons of molecular diversity indices, selective sweeps and population structure of African rice with its wild progenitor and Asian rice. Theoretical and Applied Genetics, 2019, 132, 1145-1158.	3.6	16
15	Rotational diversity effects in a triticale-based cropping system. Cereal Research Communications, 2018, 46, 717-728.	1.6	1
16	Development of species diagnostic SNP markers for quality control genotyping in four rice (Oryza L.) species. Molecular Breeding, 2018, 38, 131.	2.1	22
17	Assessment of Genetic Variation and Population Structure of Diverse Rice Genotypes Adapted to Lowland and Upland Ecologies in Africa Using SNPs. Frontiers in Plant Science, 2018, 9, 446.	3.6	27
18	Discovery and validation of genomic regions associated with resistance to maize lethal necrosis in four biparental populations. Molecular Breeding, 2018, 38, 66.	2.1	29

#	Article	IF	CITATIONS
19	Mapping QTLs Controlling Agronomic Traits in the â€~Attila' × â€~CDC Go' Spring Wheat Population und Organic Management using 90K SNP Array. Crop Science, 2017, 57, 365-377.	der 1.8	30
20	Allelic variation and effects of 16 candidate genes on disease resistance in western Canadian spring wheat cultivars. Molecular Breeding, 2017, 37, 1.	2.1	11
21	Genome-wide association mapping of genomic regions associated with phenotypic traits in Canadian western spring wheat. Molecular Breeding, 2017, 37, 1.	2.1	30
22	Mapping of QTLs associated with resistance to common bunt, tan spot, leaf rust, and stripe rust in a spring wheat population. Molecular Breeding, 2017, 37, 1.	2.1	21
23	Genetic Variation and Population Structure of Oryza glaberrima and Development of a Mini-Core Collection Using DArTseq. Frontiers in Plant Science, 2017, 8, 1748.	3.6	71
24	Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations. Frontiers in Plant Science, 2017, 8, 1916.	3.6	145
25	Genetic Diversity among Selected Elite CIMMYT Maize Hybrids in East and Southern Africa. Crop Science, 2017, 57, 2395-2404.	1.8	10
26	Genetic variation and population structure of maize inbred lines adapted to the mid-altitude sub-humid maize agro-ecology of Ethiopia using single nucleotide polymorphic (SNP) markers. BMC Genomics, 2017, 18, 777.	2.8	36
27	Population Structure and Genomewide Association Analysis of Resistance to Disease and Insensitivity to Ptr Toxins in Canadian Spring Wheat Using 90K SNP Array. Crop Science, 2017, 57, 1522-1539.	1.8	24
28	QTLs associated with agronomic traits in the Attila $\tilde{A}-$ CDC Go spring wheat population evaluated under conventional management. PLoS ONE, 2017, 12, e0171528.	2.5	68
29	QTLs Associated with Agronomic Traits in the Cutler $ ilde{A}-$ AC Barrie Spring Wheat Mapping Population Using Single Nucleotide Polymorphic Markers. PLoS ONE, 2016, 11, e0160623.	2.5	36
30	Genomeâ€wide Association for Plant Height and Flowering Time across 15 Tropical Maize Populations under Managed Drought Stress and Wellâ€Watered Conditions in Subâ€Saharan Africa. Crop Science, 2016, 56, 2365-2378.	1.8	88
31	Improving Maize Grain Yield under Drought Stress and Nonâ€stress Environments in Subâ€Saharan Africa using Markerâ€Assisted Recurrent Selection. Crop Science, 2016, 56, 344-353.	1.8	70
32	Performance and grain yield stability of maize populations developed using marker-assisted recurrent selection and pedigree selection procedures. Euphytica, 2016, 208, 285-297.	1,2	18
33	Molecular characterization of CIMMYT maize inbred lines with genotyping-by-sequencing SNPs. Theoretical and Applied Genetics, 2016, 129, 753-765.	3.6	94
34	QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance. PLoS ONE, 2016, 11, e0160749.	2.5	19
35	Genetic Gains in Grain Yield Through Genomic Selection in Eight Biâ€parental Maize Populations under Drought Stress. Crop Science, 2015, 55, 154-163.	1.8	253
36	Comparison of Kompetitive Allele Specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize. BMC Genomics, 2015, 16, 908.	2.8	89

3

#	Article	IF	Citations
37	Quantitative Trait Loci Mapping and Molecular Breeding for Developing Stress Resilient Maize for Subâ€Saharan Africa. Crop Science, 2015, 55, 1449-1459.	1.8	61
38	A Genomic Selection Index Applied to Simulated and Real Data. G3: Genes, Genomes, Genetics, 2015, 5, 2155-2164.	1.8	42
39	Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions. Euphytica, 2015, 204, 635-647.	1.2	27
40	Fine mapping of Msv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines. Theoretical and Applied Genetics, 2015, 128, 1839-1854.	3.6	61
41	Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theoretical and Applied Genetics, 2015, 128, 1957-1968.	3.6	145
42	Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity, 2015, 114, 291-299.	2.6	187
43	Genetic purity and patterns of relationships among tropical highland adapted quality protein and normal maize inbred lines using microsatellite markers. Euphytica, 2015, 204, 49-61.	1.2	14
44	High-resolution genetic mapping of maize pan-genome sequence anchors. Nature Communications, 2015, 6, 6914.	12.8	213
45	Parental genome contribution in maize DH lines derived from six backcross populations using genotyping by sequencing. Euphytica, 2015, 202, 129-139.	1.2	6
46	Assessment of the genetic diversity and pattern of relationship of West African sorghum accessions using microsatellite markers. African Journal of Biotechnology, 2014, 13, 1503-1514.	0.6	5
47	Optimal Design of Preliminary Yield Trials with Genomeâ€Wide Markers. Crop Science, 2014, 54, 48-59.	1.8	100
48	Biotechnology Success Stories by the Consultative Group on International Agriculture Research (CGIAR) System. Science Policy Reports, 2014, , 95-114.	0.1	4
49	Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Molecular Breeding, 2014, 33, 1-14.	2.1	784
50	Leaf Tissue Sampling and DNA Extraction Protocols. Methods in Molecular Biology, 2014, 1115, 53-67.	0.9	27
51	Genetic relationships and structure among open-pollinated maize varieties adapted to eastern and southern Africa using microsatellite markers. Molecular Breeding, 2014, 34, 1423-1435.	2.1	21
52	Genetic distance among doubled haploid maize lines and their testcross performance under drought stress and non-stress conditions. Euphytica, 2013, 192, 379-392.	1.2	34
53	Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genomics, 2013, 14, 313.	2.8	129
54	Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing. G3: Genes, Genomes, Genetics, 2013, 3, 1903-1926.	1.8	235

#	Article	IF	CITATIONS
55	Effectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments. G3: Genes, Genomes, Genetics, 2012, 2, 1427-1436.	1.8	242
56	Quality control genotyping for assessment of genetic identity and purity in diverse tropical maize inbred lines. Theoretical and Applied Genetics, 2012, 125, 1487-1501.	3.6	68
57	Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers. BMC Genomics, 2012, 13, 113.	2.8	109
58	Local scale patterns of gene flow and genetic diversity in a crop–wild–weedy complex of sorghum (Sorghum bicolor (L.) Moench) under traditional agricultural field conditions in Kenya. Conservation Genetics, 2012, 13, 1059-1071.	1.5	21
59	Resistance of tropical maize genotypes to the larger grain borer. Journal of Pest Science, 2012, 85, 267-275.	3.7	11
60	Effect of source germplasm and season on the in vivo haploid induction rate in tropical maize. Euphytica, 2011, 180, 219-226.	1.2	59
61	Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum) Tj ETQq1 1 0.784 2011, 122, 989-1004.	4314 rgBT 3.6	Overlock 1 48
62	Two Major Resistance Quantitative Trait Loci are Required to Counteract the Increased Susceptibility to Fusarium Head Blight of the ⟨i⟩Rhtâ€Đ1b⟨/i⟩ Dwarfing Gene in Wheat. Crop Science, 2011, 51, 2430-2438.	1.8	35
63	Ecogeographical distribution of wild, weedy and cultivated Sorghum bicolor (L.) Moench in Kenya: implications for conservation and crop-to-wild gene flow. Genetic Resources and Crop Evolution, 2010, 57, 243-253.	1.6	49
64	The inheritance of anther extrusion in hexaploid wheat and its relationship to <i>Fusarium</i> blight resistance and deoxynivalenol content. Plant Breeding, 2010, 129, 149-155.	1.9	98
65	The genetic dissection of quantitative traits in crops. Electronic Journal of Biotechnology, 2010, 13, 0-0.	2.2	89
66	Quantitative Trait Loci Controlling Fusarium Head Blight Resistance and Low Deoxynivalenol Content in Hexaploid Wheat Population from â€~Arina' and NK93604. Crop Science, 2007, 47, 294-303.	1.8	89
67	Molecular profiling of an interspecific rice population derived from a cross between WAB 56-104 (Oryza sativa) and CG 14 (Oryza glaberrima). African Journal of Biotechnology, 2007, 6, 2014-2022.	0.6	30
68	Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome, 2006, 49, 545-555.	2.0	152
69	Genetic Relationships among Rice Varieties Based On Expressed Sequence Tags and Microsatellite Markers. Asian Journal of Plant Sciences, 2006, 5, 429-437.	0.4	10
70	Patterns of phenotypic variation in endod (Phytolacca dodecandra) from Ethiopia. African Journal of Biotechnology, 2004, 3, 32-39.	0.6	1
71	Analysis of Genetic Diversity and Structure in Ethiopian Populations of Phytolacca Dodecandra Using RAPD. Hereditas, 2004, 135, 51-60.	1.4	10
72	Title is missing!. Genetic Resources and Crop Evolution, 2003, 50, 649-661.	1.6	12

#	Article	IF	CITATION
73	Medicinal use and social status of the soap berry endod (Phytolacca dodecandra) in Ethiopia. Journal of Ethnopharmacology, 2003, 85, 269-277.	4.1	32
74	Genetic relationships among ten endod types as revealed by a combination of morphological, RAPD and AFLP markers. Hereditas, 2002, 137, 149-156.	1.4	34
7 5	Comparison of multivariate methods for the analysis of genetic resources and adaptation in Phytolacca dodecandra using RAPD. Theoretical and Applied Genetics, 2000, 101, 1145-1154.	3.6	28
76	Genomeâ€wide association mapping of agronomic traits and grain characteristics in spring wheat under conventional and organic management systems. Crop Science, 0, , .	1.8	5