Di Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7111399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bone Morphogenetic Proteins. Growth Factors, 2004, 22, 233-241.	1.7	1,787
2	Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Research, 2017, 5, 16044.	11.4	731
3	MicroRNA-204 Regulates Runx2 Protein Expression and Mesenchymal Progenitor Cell Differentiation. Stem Cells, 2010, 28, 357-364.	3.2	525
4	Activation of β-Catenin Signaling in Articular Chondrocytes Leads to Osteoarthritis-Like Phenotype in Adult β-Catenin Conditional Activation Mice. Journal of Bone and Mineral Research, 2009, 24, 12-21.	2.8	414
5	MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Research and Therapy, 2013, 15, R5.	3.5	385
6	Osteoarthritis Pathogenesis: A Review of Molecular Mechanisms. Calcified Tissue International, 2014, 95, 495-505.	3.1	311
7	Inhibition of β atenin signaling in articular chondrocytes results in articular cartilage destruction. Arthritis and Rheumatism, 2008, 58, 2053-2064.	6.7	230
8	Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Research, 2019, 7, 22.	11.4	229
9	BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. Journal of Cell Science, 2011, 124, 3428-3440.	2.0	211
10	TGF- \hat{l}^2 signaling and the development of osteoarthritis. Bone Research, 2014, 2, .	11.4	184
11	Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain. Journal of Bone and Mineral Research, 2016, 31, 911-924.	2.8	181
12	Excessive mechanical loading promotes osteoarthritis through the gremlin-1–NF-κB pathway. Nature Communications, 2019, 10, 1442.	12.8	179
13	Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Annals of the New York Academy of Sciences, 2011, 1240, 61-69.	3.8	160
14	Deletion of the Transforming Growth Factor β Receptor Type II Gene in Articular Chondrocytes Leads to a Progressive Osteoarthritisâ€like Phenotype in Mice. Arthritis and Rheumatism, 2013, 65, 3107-3119.	6.7	159
15	Teriparatide as a Chondroregenerative Therapy for Injury-Induced Osteoarthritis. Science Translational Medicine, 2011, 3, 101ra93.	12.4	145
16	Smad6 Interacts with Runx2 and Mediates Smad Ubiquitin Regulatory Factor 1-induced Runx2 Degradation. Journal of Biological Chemistry, 2006, 281, 3569-3576.	3.4	142
17	Wnt/β-catenin Signaling in Osteoarthritis and in Other Forms of Arthritis. Current Rheumatology Reports, 2017, 19, 53.	4.7	141
18	Generation of a transgenic mouse model with chondrocyte-specific and tamoxifen-inducible expression of Cre recombinase. Genesis, 2007, 45, 44-50.	1.6	132

#	Article	IF	CITATIONS
19	Inhibition of β-catenin signaling causes defects in postnatal cartilage development. Journal of Cell Science, 2008, 121, 1455-1465.	2.0	129
20	Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Research and Therapy, 2011, 13, R130.	3.5	124
21	Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Annals of the Rheumatic Diseases, 2020, 79, 635-645.	0.9	124
22	Smad3-Deficient Chondrocytes Have Enhanced BMP Signaling and Accelerated Differentiation. Journal of Bone and Mineral Research, 2005, 21, 4-16.	2.8	121
23	Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells, 2011, 29, 1601-1610.	3.2	120
24	Cartilage-specific β-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. Journal of Bone and Mineral Research, 2012, 27, 1680-1694.	2.8	116
25	Murine and Chicken Chondrocytes Regulate Osteoclastogenesis by Producing RANKL in Response to BMP2. Journal of Bone and Mineral Research, 2008, 23, 314-325.	2.8	113
26	Induction of an osteoarthritisâ€like phenotype and degradation of phosphorylated Smad3 by Smurf2 in transgenic mice. Arthritis and Rheumatism, 2008, 58, 3132-3144.	6.7	112
27	The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression. Nature Communications, 2019, 10, 2876.	12.8	112
28	CHIP promotes Runx2 degradation and negatively regulates osteoblast differentiation. Journal of Cell Biology, 2008, 181, 959-972.	5.2	104
29	Axin2 controls bone remodeling through the β-catenin–BMP signaling pathway in adult mice. Journal of Cell Science, 2009, 122, 3566-3578.	2.0	101
30	Kindlin-2 controls TGF- \hat{l}^2 signalling and Sox9 expression to regulate chondrogenesis. Nature Communications, 2015, 6, 7531.	12.8	93
31	Conditional activation of βâ€catenin signaling in mice leads to severe defects in intervertebral disc tissue. Arthritis and Rheumatism, 2012, 64, 2611-2623.	6.7	92
32	MicroRNA-146a reduces IL-1 dependent inflammatory responses in the intervertebral disc. Gene, 2015, 555, 80-87.	2.2	91
33	PTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation. Journal of Cell Science, 2009, 122, 1382-1389.	2.0	89
34	SOX9 Regulates Multiple Genes in Chondrocytes, Including Genes Encoding ECM Proteins, ECM Modification Enzymes, Receptors, and Transporters. PLoS ONE, 2014, 9, e107577.	2.5	86
35	Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis. Annals of the Rheumatic Diseases, 2019, 78, 676-682.	0.9	86
36	TGF-Î ² signaling plays an essential role in the growth and maintenance of intervertebral disc tissue. FEBS Letters, 2011, 585, 1209-1215.	2.8	83

#	Article	IF	CITATIONS
37	Genetic inhibition of fibroblast growth factor receptor 1 in knee cartilage attenuates the degeneration of articular cartilage in adult mice. Arthritis and Rheumatism, 2012, 64, 3982-3992.	6.7	81
38	Anti-DKK1 antibody promotes bone fracture healing through activation of β-catenin signaling. Bone, 2015, 71, 63-75.	2.9	80
39	Loganin ameliorates cartilage degeneration and osteoarthritis development in an osteoarthritis mouse model through inhibition of NF-κB activity and pyroptosis in chondrocytes. Journal of Ethnopharmacology, 2020, 247, 112261.	4.1	80
40	Deletion of Runx2 in Articular Chondrocytes Decelerates the Progression of DMM-Induced Osteoarthritis in Adult Mice. Scientific Reports, 2017, 7, 2371.	3.3	74
41	Smurf1 inhibits mesenchymal stem cell proliferation and differentiation into osteoblasts through JunB degradation. Journal of Bone and Mineral Research, 2010, 25, 1246-1256.	2.8	73
42	VEGF-C, a Lymphatic Growth Factor, Is a RANKL Target Gene in Osteoclasts That Enhances Osteoclastic Bone Resorption through an Autocrine Mechanism. Journal of Biological Chemistry, 2008, 283, 13491-13499.	3.4	70
43	Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel. Acta Biomaterialia, 2018, 79, 202-215.	8.3	65
44	Wnt-mediated regulation of chondrocyte maturation: Modulation by TGF-β. Journal of Cellular Biochemistry, 2005, 95, 1057-1068.	2.6	63
45	Speciesâ€specific biological effects of FGFâ€2 in articular cartilage: Implication for distinct roles within the FGF receptor family. Journal of Cellular Biochemistry, 2012, 113, 2532-2542.	2.6	63
46	Proteomic characteristics of bronchoalveolar lavage fluid in critical COVIDâ€19 patients. FEBS Journal, 2021, 288, 5190-5200.	4.7	63
47	Chondrocyte BMP2 signaling plays an essential role in bone fracture healing. Gene, 2013, 512, 211-218.	2.2	62
48	Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-1°B signaling. Journal of Ethnopharmacology, 2021, 266, 113447.	4.1	61
49	Smurf2 induces degradation of GSK-3β and upregulates β-catenin in chondrocytes: A potential mechanism for Smurf2-induced degeneration of articular cartilage. Experimental Cell Research, 2009, 315, 2386-2398.	2.6	59
50	Bone Morphogenetic Protein 2 Activates Smad6 Gene Transcription through Bone-specific Transcription Factor Runx2. Journal of Biological Chemistry, 2007, 282, 10742-10748.	3.4	57
51	ATF4 promotes bone angiogenesis by increasing vegf expression and release in the bone environment. Journal of Bone and Mineral Research, 2013, 28, 1870-1884.	2.8	57
52	Runx2 plays a central role in Osteoarthritis development. Journal of Orthopaedic Translation, 2020, 23, 132-139.	3.9	56
53	Characterization of degenerative human facet joints and facet joint capsular tissues. Osteoarthritis and Cartilage, 2015, 23, 2242-2251.	1.3	54
54	Ĵ²â€€atenin, cartilage, and osteoarthritis. Annals of the New York Academy of Sciences, 2010, 1192, 344-350.	3.8	52

#	Article	IF	CITATIONS
55	FGFR3/fibroblast growth factor receptor 3 inhibits autophagy through decreasing the ATG12–ATG5 conjugate, leading to the delay of cartilage development in achondroplasia. Autophagy, 2015, 11, 1998-2013.	9.1	51
56	Chondrocyte β atenin Signaling Regulates Postnatal Bone Remodeling Through Modulation of Osteoclast Formation in a Murine Model. Arthritis and Rheumatology, 2014, 66, 107-120.	5.6	50
57	Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice. Bone Research, 2020, 8, 2.	11.4	50
58	Wnt signaling in bone, kidney, intestine, and adipose tissue and interorgan interaction in aging. Annals of the New York Academy of Sciences, 2019, 1442, 48-60.	3.8	49
59	Environmental Disruption of Circadian Rhythm Predisposes Mice to Osteoarthritisâ€Like Changes in Knee Joint. Journal of Cellular Physiology, 2015, 230, 2174-2183.	4.1	47
60	Wnt/β atenin signaling plays a key role in the development of spondyloarthritis. Annals of the New York Academy of Sciences, 2016, 1364, 25-31.	3.8	46
61	Establishment of an index with increased sensitivity for assessing murine arthritis. Journal of Orthopaedic Research, 2011, 29, 1145-1151.	2.3	45
62	<i>PKCδ</i> null mutations in a mouse model of osteoarthritis alter osteoarthritic pain independently of joint pathology by augmenting NGF/TrkA-induced axonal outgrowth. Annals of the Rheumatic Diseases, 2016, 75, 2133-2141.	0.9	45
63	FGFR3 Deficiency Causes Multiple Chondroma-like Lesions by Upregulating Hedgehog Signaling. PLoS Genetics, 2015, 11, e1005214.	3.5	44
64	Lipoatrophy and metabolic disturbance in mice with adipose-specific deletion of kindlin-2. JCI Insight, 2019, 4, .	5.0	43
65	Osteoarthritis Pain. International Journal of Molecular Sciences, 2022, 23, 4642.	4.1	43
66	Distribution and Alteration of Lymphatic Vessels in Knee Joints of Normal and Osteoarthritic Mice. Arthritis and Rheumatology, 2014, 66, 657-666.	5.6	42
67	FGFR3 deficiency enhances CXCL12-dependent chemotaxis of macrophages via upregulating CXCR7 and aggravates joint destruction in mice. Annals of the Rheumatic Diseases, 2020, 79, 112-122.	0.9	41
68	Axin2 regulates chondrocyte maturation and axial skeletal development. Journal of Orthopaedic Research, 2010, 28, 89-95.	2.3	38
69	Kindlin-2 modulates MafA and β-catenin expression to regulate β-cell function and mass in mice. Nature Communications, 2020, 11, 484.	12.8	38
70	Inhibition of Ihh Reverses Temporomandibular Joint Osteoarthritis via a PTH1R Signaling Dependent Mechanism. International Journal of Molecular Sciences, 2019, 20, 3797.	4.1	35
71	A Novel Regulatory Mechanism of Type II Collagen Expression via a SOX9-dependent Enhancer in Intron 6. Journal of Biological Chemistry, 2017, 292, 528-538.	3.4	34
72	Baicalin prevents the apoptosis of endplate chondrocytes by inhibiting the oxidative stress induced by H2O2. Molecular Medicine Reports, 2017, 16, 2985-2991.	2.4	34

#	Article	IF	CITATIONS
73	Growth factor signalling in osteoarthritis. Growth Factors, 2018, 36, 187-195.	1.7	34
74	Molecular signaling in temporomandibular joint osteoarthritis. Journal of Orthopaedic Translation, 2022, 32, 21-27.	3.9	34
75	Dstyk mutation leads to congenital scoliosis-like vertebral malformations in zebrafish via dysregulated mTORC1/TFEB pathway. Nature Communications, 2020, 11, 479.	12.8	31
76	Kindlin-2 regulates skeletal homeostasis by modulating PTH1R in mice. Signal Transduction and Targeted Therapy, 2020, 5, 297.	17.1	31
77	Acute Synovitis after Trauma Precedes and is Associated with Osteoarthritis Onset and Progression. International Journal of Biological Sciences, 2020, 16, 970-980.	6.4	30
78	Protective and biogenesis effects of sodium hydrosulfide on brain mitochondria after cardiac arrest and resuscitation. European Journal of Pharmacology, 2014, 741, 74-82.	3.5	29
79	Runx2 and microRNA regulation in bone and cartilage diseases. Annals of the New York Academy of Sciences, 2016, 1383, 80-87.	3.8	29
80	The E3 ubiquitin ligase CHIP in normal cell function and in disease conditions. Annals of the New York Academy of Sciences, 2020, 1460, 3-10.	3.8	29
81	Aberrant spinal mechanical loading stress triggers intervertebral disc degeneration by inducing pyroptosis and nerve ingrowth. Scientific Reports, 2021, 11, 772.	3.3	29
82	Serum osteocalcin levels are inversely associated with plasma glucose and body mass index in healthy Chinese women. Acta Pharmacologica Sinica, 2014, 35, 1521-1526.	6.1	28
83	Osthole Promotes Bone Fracture Healing through Activation of BMP Signaling in Chondrocytes. International Journal of Biological Sciences, 2017, 13, 996-1007.	6.4	28
84	AMPK Signaling in Energy Control, Cartilage Biology, and Osteoarthritis. Frontiers in Cell and Developmental Biology, 2021, 9, 696602.	3.7	28
85	Focal adhesion proteins Pinch1 and Pinch2 regulate bone homeostasis in mice. JCI Insight, 2019, 4, .	5.0	28
86	Disruption of glucocorticoid signaling in chondrocytes delays metaphyseal fracture healing but does not affect normal cartilage and bone development. Bone, 2014, 69, 12-22.	2.9	27
87	Activation of β-catenin signaling in aggrecan-expressing cells in temporomandibular joint causes osteoarthritis-like defects. International Journal of Oral Science, 2018, 10, 13.	8.6	27
88	Cell typeâ€specific effects of Notch signaling activation on intervertebral discs: Implications for intervertebral disc degeneration. Journal of Cellular Physiology, 2018, 233, 5431-5440.	4.1	26
89	Generation of Axin1 conditional mutant mice. Genesis, 2011, 49, 98-102.	1.6	25
90	Kartogenin hydrolysis product 4-aminobiphenyl distributes to cartilage and mediates cartilage regeneration. Theranostics, 2019, 9, 7108-7121.	10.0	25

#	Article	IF	CITATIONS
91	SOX9 directly Regulates CTGF/CCN2 Transcription in Growth Plate Chondrocytes and in Nucleus Pulposus Cells of Intervertebral Disc. Scientific Reports, 2016, 6, 29916.	3.3	24
92	LIM domain proteins Pinch1/2 regulate chondrogenesis and bone mass in mice. Bone Research, 2020, 8, 37.	11.4	24
93	Mice Deficient in NF-ή p50 and p52 or RANK Have Defective Growth Plate Formation and Post-natal Dwarfism. Bone Research, 2013, 1, 336-345.	11.4	23
94	Chondrocytes-Specific Expression of Osteoprotegerin Modulates Osteoclast Formation in Metaphyseal Bone. Scientific Reports, 2015, 5, 13667.	3.3	23
95	Core regulatory RNA molecules identified in articular cartilage stem/progenitor cells during osteoarthritis progression. Epigenomics, 2019, 11, 669-684.	2.1	23
96	Annulus fibrosus cells express and utilize C-C chemokine receptor 5 (CCR5) for migration. Spine Journal, 2017, 17, 720-726.	1.3	22
97	Genomeâ€wide microRNA screening reveals miRâ€582â€5p as a mesenchymal stem cellâ€specific microRNA in subchondral bone of the human knee joint. Journal of Cellular Physiology, 2019, 234, 21877-21888.	4.1	22
98	Deletion of <i>Axin1</i> in condylar chondrocytes leads to osteoarthritisâ€like phenotype in temporomandibular joint via activation of βâ€catenin and FGF signaling. Journal of Cellular Physiology, 2019, 234, 1720-1729.	4.1	21
99	Characterization of Cre recombinase  mouse lines enabling cell typeâ€specific targeting of post intervertebral discs. Journal of Cellular Physiology, 2019, 234, 14422-14431.	tnatal 4.1	21
100	Deletion of <i>Runx2</i> in condylar chondrocytes disrupts TMJ tissue homeostasis. Journal of Cellular Physiology, 2019, 234, 3436-3444.	4.1	21
101	Oral administration of berberine limits post-traumatic osteoarthritis development and associated pain via AMP-activated protein kinase (AMPK) in mice. Osteoarthritis and Cartilage, 2022, 30, 160-171.	1.3	21
102	Kindlin-2 preserves integrity of the articular cartilage to protect against osteoarthritis. Nature Aging, 2022, 2, 332-347.	11.6	21
103	Carboxyl Terminus of Hsp70â€Interacting Protein Regulation of Osteoclast Formation in Mice Through Promotion of Tumor Necrosis Factor Receptor–Associated Factor 6 Protein Degradation. Arthritis and Rheumatology, 2014, 66, 1854-1863.	5.6	20
104	Bovine lactoferricin induces TIMP-3 via the ERK1/2-Sp1 axis in human articular chondrocytes. Gene, 2013, 517, 12-18.	2.2	19
105	Systemic administration of strontium or NBD peptide ameliorates early stage cartilage degradation of mouse mandibular condyles. Osteoarthritis and Cartilage, 2016, 24, 178-187.	1.3	19
106	Runx2 is required for postnatal intervertebral disc tissue growth and development. Journal of Cellular Physiology, 2019, 234, 6679-6687.	4.1	19
107	Effects of sodium hydrosulfide on intestinal mucosal injury in a rat model of cardiac arrest and cardiopulmonary resuscitation. Life Sciences, 2013, 93, 24-29.	4.3	18
108	Differential roles of TGF-β signalling in joint tissues during osteoarthritis development. Annals of the Rheumatic Diseases, 2016, 75, e72-e72.	0.9	18

#	Article	IF	CITATIONS
109	CHIP regulates bone mass by targeting multiple TRAF family members in bone marrow stromal cells. Bone Research, 2018, 6, 10.	11.4	18
110	Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage. FASEB Journal, 2018, 32, 478-487.	0.5	18
111	TGFâ€Ĵ²/Smad2 signalling regulates enchondral bone formation of Gli1 ⁺ periosteal cells during fracture healing. Cell Proliferation, 2020, 53, e12904.	5.3	18
112	Moderate Fluid Shear Stress Regulates Heme Oxygenase-1 Expression to Promote Autophagy and ECM Homeostasis in the Nucleus Pulposus Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 127.	3.7	18
113	Role of Forkhead Box O Transcription Factors in Oxidative Stress-Induced Chondrocyte Dysfunction: Possible Therapeutic Target for Osteoarthritis?. International Journal of Molecular Sciences, 2018, 19, 3794.	4.1	17
114	Activation of βâ€catenin in <i>Col2</i> â€expressing chondrocytes leads to osteoarthritisâ€like defects in hip joint. Journal of Cellular Physiology, 2019, 234, 18535-18543.	4.1	16
115	IFT20 is required for the maintenance of cartilaginous matrix in condylar cartilage. Biochemical and Biophysical Research Communications, 2019, 509, 222-226.	2.1	16
116	Inhibition of Axin1 in osteoblast precursor cells leads to defects in postnatal bone growth through suppressing osteoclast formation. Bone Research, 2020, 8, 31.	11.4	16
117	Osteoblast derived-neurotrophin‑3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats. Bone, 2018, 116, 232-247.	2.9	15
118	SHP2-Deficiency in Chondrocytes Deforms Orofacial Cartilage and Ciliogenesis in Mice. Journal of Bone and Mineral Research, 2015, 30, 2028-2032.	2.8	13
119	Serum miRNAs are potential biomarkers for the detection of disc degeneration, among which <i>miRâ€26aâ€5p</i> suppresses Smad1 to regulate disc homeostasis. Journal of Cellular and Molecular Medicine, 2019, 23, 6679-6689.	3.6	11
120	Nociceptive behavioural assessments in mouse models of temporomandibular joint disorders. International Journal of Oral Science, 2020, 12, 26.	8.6	11
121	Epigenetic and microRNA regulation during osteoarthritis development. F1000Research, 2015, 4, 1092.	1.6	11
122	Cysteineâ€rich protein 61 regulates adipocyte differentiation from mesenchymal stem cells through mammalian target of rapamycin complex 1 and canonical Wnt signaling. FASEB Journal, 2018, 32, 3096-3107.	0.5	10
123	Amygdalin Promotes Fracture Healing through TGF- <i>β</i> /Smad Signaling in Mesenchymal Stem Cells. Stem Cells International, 2020, 2020, 1-13.	2.5	10
124	Comparative intra-articular gene transfer of seven adeno-associated virus serotypes reveals that AAV2 mediates the most efficient transduction to mouse arthritic chondrocytes. PLoS ONE, 2020, 15, e0243359.	2.5	9
125	Peripheral Blood Stem Cell Therapy Does Not Improve Outcomes of Femoral Head Osteonecrosis With Capâ€Shaped Separated Cartilage Defect. Journal of Orthopaedic Research, 2020, 38, 269-276.	2.3	8
126	Chondrocyte-Specific Inhibition of β-Catenin Signaling Leads to Dysplasia of the Caudal Vertebrae in Mice. Spine, 2013, 38, 2079-2084.	2.0	7

#	Article	IF	CITATIONS
127	Prognosis after autologous peripheral blood stem cell transplantation for osteonecrosis of the femoral head in the pre-collapse stage: a retrospective cohort study. Stem Cell Research and Therapy, 2020, 11, 83.	5.5	7
128	Effects of hydrogen sulfide on a rat model of sepsis-associated encephalopathy. Journal of Huazhong University of Science and Technology [Medical Sciences], 2011, 31, 632-636.	1.0	6
129	Specific Deletion of β-Catenin in <i>Col2</i> -Expressing Cells Leads to Defects in Epiphyseal Bone. International Journal of Biological Sciences, 2017, 13, 1540-1546.	6.4	6
130	Postnatal deletion of <i>Alk5</i> gene in meniscal cartilage accelerates ageâ€dependent meniscal degeneration in mice. Journal of Cellular Physiology, 2019, 234, 595-605.	4.1	6
131	Degenerative musculoskeletal diseases: Pathology and treatments. Journal of Orthopaedic Translation, 2019, 17, 1-2.	3.9	6
132	CHIP regulates skeletal development and postnatal bone growth. Journal of Cellular Physiology, 2020, 235, 5378-5385.	4.1	6
133	Postaxial limb hypoplasia (PALH): the classification, clinical features, and related developmental biology. Annals of the New York Academy of Sciences, 2017, 1409, 67-78.	3.8	5
134	Phenotypic characterization of <i>Slc26a2</i> mutant mice reveals a multifactorial etiology of spondylolysis. FASEB Journal, 2020, 34, 720-734.	0.5	5
135	Functional Deficits in Mice Expressing Human Interleukin 8. Comparative Medicine, 2020, 70, 205-215.	1.0	5
136	miRNAs in Circulation: Mirroring Bone Conditions?. Journal of Bone and Mineral Research, 2014, 29, 1715-1717.	2.8	4
137	HIV Infection Leads to Redistribution of Leaky Claudin-2 in the Intestine of Humanized SCID IL-2R ^{â^'/â^'} Hu-PBMC Mice. AIDS Research and Human Retroviruses, 2015, 31, 774-775.	1.1	3
138	A novel approach to establishing a temporomandibular joint fibrocartilage cell line. Journal of Dental Sciences, 2022, , .	2.5	2
139	Effects of oxidized low density lipoprotein on transformation of valvular myofibroblasts to osteoblast-like phenotype. Journal of Huazhong University of Science and Technology [Medical Sciences], 2015, 35, 362-367.	1.0	1
140	Growth Factors and Osteoarthritis. , 2020, , 632-640.		1
141	TGFB IN CHONDROCYTE BIOLOGY AND CARTILAGE PATHOLOGY. , 2005, , 299-311.		0
142	RECENT ADVANCES IN BONE BIOLOGY RESEARCH., 2005,, 497-511.		0
143	BMPs and Wnts in Bone and Cartilage Regeneration. Mechanical Engineering Series, 2015, , 17-37.	0.2	0
144	Regulation of Cartilage Matrix Protein by Transcription Factors, SOX9 and Î ² -Catenin. , 2020, , 609-620.		0