Kristofer G Reyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7111036/publications.pdf

Version: 2024-02-01

	840776		940533	
18	778	11	16	
papers	citations	h-index	g-index	
19	19	19	778	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot. Advanced Materials, 2020, 32, e2001626.	21.0	170
2	Autonomous experimentation systems for materials development: A community perspective. Matter, 2021, 4, 2702-2726.	10.0	143
3	A Bayesian experimental autonomous researcher for mechanical design. Science Advances, 2020, 6, eaaz1708.	10.3	127
4	Prediction of Nanoscale Friction for Two-Dimensional Materials Using a Machine Learning Approach. Tribology Letters, 2020, 68, 1.	2.6	80
5	Selfâ€Driven Multistep Quantum Dot Synthesis Enabled by Autonomous Robotic Experimentation in Flow. Advanced Intelligent Systems, 2021, 3, 2000245.	6.1	58
6	The machine learning revolution in materials?. MRS Bulletin, 2019, 44, 530-537.	3.5	45
7	Using simulation to accelerate autonomous experimentation: A case study using mechanics. IScience, 2021, 24, 102262.	4.1	35
8	Accelerated AI development for autonomous materials synthesis in flow. Chemical Science, 2021, 12, 6025-6036.	7.4	35
9	Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions. Nucleic Acids Research, 2017, 45, 5523-5538.	14.5	23
10	Nested-Batch-Mode Learning and Stochastic Optimization with An Application to Sequential MultiStage Testing in Materials Science. SIAM Journal of Scientific Computing, 2015, 37, B361-B381.	2.8	21
11	Autonomous Nanocrystal Doping by Selfâ€Driving Fluidic Microâ€Processors. Advanced Intelligent Systems, 2022, 4, .	6.1	16
12	Advanced machine learning decision policies for diameter control of carbon nanotubes. Npj Computational Materials, $2021, 7, .$	8.7	11
13	Optimal Learning with Local Nonlinear Parametric Models over Continuous Designs. SIAM Journal of Scientific Computing, 2020, 42, A2134-A2157.	2.8	4
14	Machine-Learning Assisted Exploration: Toward the Next-Generation Catalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2021, 168, 126523.	2.9	4
15	A Knowledge Gradient Policy for Sequencing Experiments to Identify the Structure of RNA Molecules Using a Sparse Additive Belief Model. INFORMS Journal on Computing, 2018, 30, 750-767.	1.7	2
16	Problem-fluent models for complex decision-making in autonomous materials research. Computational Materials Science, 2021, 193, 110385.	3.0	2
17	Data-driven visualization schema of a materials informatics curriculum: Convergence of materials science and information science. MRS Advances, 2020, 5, 293-303.	0.9	0
18	Decision-Making Under Uncertainty for Multi-stage Pipelines: Simulation Studies to Benchmark Screening Strategies. Jom, 0, , .	1.9	0