## Hitoshi Kusama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7110787/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Insights into the carbonate effect on water oxidation over metal oxide photocatalysts/photoanodes.<br>Physical Chemistry Chemical Physics, 2022, 24, 5894-5902.                                                            | 2.8 | 6         |
| 2  | NaBr-Assisted Photoelectrochemical and Photochemical Integrated Process for Isomerization of<br>Maleate Esters to Fumarate Esters. ACS Sustainable Chemistry and Engineering, 2021, 9, 6886-6893.                          | 6.7 | 5         |
| 3  | A computational study of a reduced dye and its O2 reduction: Implication on H2O2 production with dye-sensitized photocathodes. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113437.                 | 3.9 | 1         |
| 4  | Interaction of tris(4-anisyl)amine mediator in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387, 112150.                                                                     | 3.9 | 2         |
| 5  | Intermolecular interaction between anthraquinone dyes and TEMPO mediator in dye-sensitized photocatalytic systems. Journal of Photochemistry and Photobiology, 2020, 2, 100003.                                            | 2.5 | 0         |
| 6  | A slight bluish-white fluorescence from E,E-2,6-bis(4-cyanostyryl)pyridine pristine crystals. RSC<br>Advances, 2020, 10, 2727-2733.                                                                                        | 3.6 | 2         |
| 7  | Interaction between dyes and SeCNâ^'–(SeCN)2 redox mediator in dye-sensitized solar cells. Journal of<br>Photochemistry and Photobiology A: Chemistry, 2019, 376, 255-262.                                                 | 3.9 | 3         |
| 8  | Interaction between dyes and iodide mediators in p-type dye-sensitized solar cells. Journal of<br>Photochemistry and Photobiology A: Chemistry, 2018, 357, 60-71.                                                          | 3.9 | 1         |
| 9  | Comparative study on the interactions of sulfide and iodine mediators with a dye in p-type<br>dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 110-118.                     | 3.9 | 2         |
| 10 | Interactions Between Thiocyanate-Free Bis-Tridentate Ru Complexes and lodide in Dye-Sensitized Solar<br>Cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 134-142.                                | 3.9 | 1         |
| 11 | Interaction between disulfide/thiolate mediators and ruthenium complex in dye-sensitized solar cells.<br>Journal of Photochemistry and Photobiology A: Chemistry, 2017, 349, 207-215.                                      | 3.9 | 1         |
| 12 | Comparative study on the interactions of TEMPO and iodine with organic dyes in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 95-101.                                     | 3.9 | 4         |
| 13 | A computational study on Ru complexes with bidentate carboxylate ligands: Insights into the photocurrents of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 314, 171-177.      | 3.9 | 5         |
| 14 | A comparative computational study on the interactions of N719 and N749 dyes with iodine in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2015, 17, 4379-4387.                                           | 2.8 | 14        |
| 15 | Nearâ€IR Sensitization of Dye‣ensitized Solar Cells Using Thiocyanateâ€Free Cyclometalated Ruthenium(II)<br>Complexes Having a Pyridylquinoline Ligand. European Journal of Inorganic Chemistry, 2014, 2014,<br>1303-1311. | 2.0 | 21        |
| 16 | Intermolecular interactions between a Ru complex and organic dyes in cosensitized solar cells: a computational study. Physical Chemistry Chemical Physics, 2014, 16, 16166.                                                | 2.8 | 12        |
| 17 | Theoretical study of cyclometalated Ru(II) dyes: Implications on the open-circuit voltage of<br>dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 272, 80-89.<br>-                | 3.9 | 5         |
| 18 | Photocatalytic Energy Storage over Surface-modified WO3 Using V5+/V4+ Redox Mediator. Chemistry                                                                                                                            | 1.3 | 19        |

Нітозні Кизама

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of Side Groups for Ruthenium Bipyridyl Dye on the Interactions with Iodine in Dye-Sensitized<br>Solar Cells. Journal of Physical Chemistry C, 2012, 116, 1493-1502.                                                                                     | 3.1 | 14        |
| 20 | Theoretical Study on the Intermolecular Interactions of Black Dye Dimers and Black Dye–Deoxycholic<br>Acid Complexes in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 23906-23914.                                                   | 3.1 | 24        |
| 21 | Effect of Cations on the Interactions of Ru Dye and Iodides in Dye-Sensitized Solar Cells: A Density Functional Theory Study. Journal of Physical Chemistry C, 2011, 115, 2544-2552.                                                                           | 3.1 | 33        |
| 22 | Theoretical Study on the Interactions between Black Dye and Iodide in Dye-Sensitized Solar Cells.<br>Journal of Physical Chemistry C, 2011, 115, 9267-9275.                                                                                                    | 3.1 | 29        |
| 23 | Effect of Carbonate Ions on the Photooxidation of Water over Porous BiVO4 Film Photoelectrode<br>under Visible Light. Chemistry Letters, 2010, 39, 17-19.                                                                                                      | 1.3 | 52        |
| 24 | Significant Effects of Anion in Aqueous Reactant Solution on Photocatalytic O2 Evolution and Fe(III)<br>Reduction. Chemistry Letters, 2010, 39, 846-847.                                                                                                       | 1.3 | 22        |
| 25 | Cs-Modified WO <sub>3</sub> Photocatalyst Showing Efficient Solar Energy Conversion for<br>O <sub>2</sub> Production and Fe (III) Ion Reduction under Visible Light. Journal of Physical Chemistry<br>Letters, 2010, 1, 1196-1200.                             | 4.6 | 122       |
| 26 | Combinatorial Search for Iron/Titanium-Based Ternary Oxides with a Visible-Light Response. ACS<br>Combinatorial Science, 2010, 12, 356-362.                                                                                                                    | 3.3 | 22        |
| 27 | Simultaneous Interactions of Ru Dye with Iodide Ions and Nitrogen-Containing Heterocycles in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 11335-11341.                                                                              | 3.1 | 21        |
| 28 | Nitrogen-Containing Heterocycles' Interaction with Ru Dye in Dye-Sensitized Solar Cells. Journal of<br>Physical Chemistry C, 2009, 113, 20764-20771.                                                                                                           | 3.1 | 26        |
| 29 | DFT investigation of the TiO2 band shift by nitrogen-containing heterocycle adsorption and implications on dye-sensitized solar cell performance. Solar Energy Materials and Solar Cells, 2008, 92, 84-87.                                                     | 6.2 | 60        |
| 30 | TiO <sub>2</sub> Band Shift by Nitrogen-Containing Heterocycles in Dye-Sensitized Solar Cells:  a<br>Periodic Density Functional Theory Study. Langmuir, 2008, 24, 4411-4419.                                                                                  | 3.5 | 161       |
| 31 | Data mining assisted by theoretical calculations for improving dye-sensitized solar cell performance.<br>Solar Energy Materials and Solar Cells, 2007, 91, 76-78.                                                                                              | 6.2 | 4         |
| 32 | Theoretical studies of charge-transfer complexes of I2 with pyrazoles, and implications on the dye-sensitized solar cell performance. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 233-241.                                             | 3.9 | 11        |
| 33 | Improved performance of Black-dye-sensitized solar cells with nanocrystalline anatase TiO2<br>photoelectrodes prepared from TiCl4 and ammonium carbonate. Journal of Photochemistry and<br>Photobiology A: Chemistry, 2007, 189, 100-104.                      | 3.9 | 19        |
| 34 | Theoretical studies of 1:1 charge-transfer complexes between nitrogen-containing heterocycles and I2 molecules, and implications on the performance of dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 268-273. | 3.9 | 40        |
| 35 | Density functional study of alkylpyridine–iodine interaction and its implications in the open-circuit photovoltage of dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2006, 90, 953-966.                                                    | 6.2 | 18        |
| 36 | Influence of nitrogen-containing heterocyclic additives in Iâ^'/I3â^' redox electrolytic solution on the performance of Ru-dye-sensitized nanocrystalline TiO2 solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169, 169-176.        | 3.9 | 69        |

Нітозні Кизама

| #  | Article                                                                                                                                                                                                                                     | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Density functional study of imidazole–iodine interaction and its implication in dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171, 197-204.                                                     | 3.9 | 19        |
| 38 | Influence of pyrazole derivatives in Iâ^'/I3â^' redox electrolyte solution on Ru(II)-dye-sensitized TiO2<br>solar cell performance. Solar Energy Materials and Solar Cells, 2005, 85, 333-344.                                              | 6.2 | 39        |
| 39 | Theoretical study of quinolines-I2 intermolecular interaction and implications on dye-sensitized solar cell performance. Journal of Computational Chemistry, 2005, 26, 1372-1382.                                                           | 3.3 | 15        |
| 40 | Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 441-448.                                                        | 3.9 | 66        |
| 41 | Influence of alkylaminopyridine additives in electrolytes on dye-sensitized solar cell performance.<br>Solar Energy Materials and Solar Cells, 2004, 81, 87-99.                                                                             | 6.2 | 68        |
| 42 | Influence of aminothiazole additives in Iâ^'/I3â^' redox electrolyte solution on Ru(II)-dye-sensitized<br>nanocrystalline TiO2 solar cell performance. Solar Energy Materials and Solar Cells, 2004, 82, 457-465.                           | 6.2 | 21        |
| 43 | Influence of quinoline derivatives in Iâ^'/I3â^' redox electrolyte solution on the performance of<br>Ru(II)-dye-sensitized nanocrystalline TiO2 solar cell. Journal of Photochemistry and Photobiology A:<br>Chemistry, 2004, 165, 157-163. | 3.9 | 22        |
| 44 | Influence of alkylpyridine additives in electrolyte solution on the performance of dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2003, 80, 167-179.                                                                    | 6.2 | 110       |
| 45 | Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance.<br>Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 171-179.                                                        | 3.9 | 44        |
| 46 | Hydrogenation Reaction of CO2 by Using FSM-16 and SiO2 Supported Rh Catalysts Nippon Kagaku<br>Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 2002, 2002, 103-105.                                        | 0.1 | 0         |
| 47 | Hydrogenation of CO2 over SiO2 Supported Rh-Co-alkalimetal Catalysts Nippon Kagaku Kaishi /<br>Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 2002, 2002, 107-110.                                                 | 0.1 | 1         |
| 48 | The Effect of Precursors on CO2 Hydrogenation Reactivity over SiO2 Supported Rh-Li and Rh-Fe<br>Catalysts Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry<br>Journal, 2001, 2001, 483-485.            | 0.1 | 0         |
| 49 | CO2 hydrogenation reactivity and structure of Rh/SiO2 catalysts prepared from acetate, chloride and nitrate precursors. Applied Catalysis A: General, 2001, 205, 285-294.                                                                   | 4.3 | 69        |
| 50 | Characterization of Rh-Co/SiO2 catalysts for CO2 hydrogenation with TEM, XPS and FT-IR. Applied Catalysis A: General, 2001, 207, 85-94.                                                                                                     | 4.3 | 25        |
| 51 | Alcohol synthesis by catalytic hydrogenation of CO2 over Rh-Co/SiO2. Applied Organometallic Chemistry, 2000, 14, 836-840.                                                                                                                   | 3.5 | 31        |
| 52 | Effect of metal loading on CO2 hydrogenation reactivity over Rh/SiO2 catalysts. Applied Catalysis A:<br>General, 2000, 197, 255-268.                                                                                                        | 4.3 | 48        |
| 53 | Photo-Oxidative Coupling of Methane over TiO2-based Catalysts. Chemistry Letters, 1997, 26, 457-458.                                                                                                                                        | 1.3 | 7         |
| 54 | In-situ FT-IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, Al2O3, and TiO2. Applied Catalysis A: General, 1997, 165, 391-409.                                                                                            | 4.3 | 146       |

| #  | Article                                                                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Ethanol synthesis by catalytic hydrogenation of CO2 over Rhî—,FeSiO2 catalysts. Energy, 1997, 22, 343-348.                                                                                                                                                                                                                                                        | 8.8 | 86        |
| 56 | Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chemical Physics Letters, 1997, 277, 387-391.                                                                                                                                                          | 2.6 | 183       |
| 57 | CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts. Catalysis Today, 1996, 28, 261-266.                                                                                                                                                                                                                                                                 | 4.4 | 136       |
| 58 | Ethanol Synthesis by Catalytic Hydrogenation of Carbon Dioxide over Promoted Rhodium Catalysts. I.<br>The Effect of Additives on Ethanol Synthesis by Catalytic Hydrogenation of Carbon Dioxide over Silica<br>Supported Rhodium Catalysts Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and<br>Industrial Chemistry Journal, 1995, 1995, 875-880. | 0.1 | 8         |
| 59 | Effect of Catalyst Preparation on the Oxidative Coupling of Methane over SrO–La2O3. Bulletin of the Chemical Society of Japan, 1994, 67, 2894-2897.                                                                                                                                                                                                               | 3.2 | 15        |