Zhijun Zhang

List of Publications by Year in descending order

[^0]

<i>In vivo</i> CT imaging tracking of stem cells labeled with Au nanoparticles. View, 2022, 3, 20200119.
5.3

16

Extracellular vesicles from adipose-derived stem cells promote microglia M2 polarization and
2 neurological recovery in a mouse model of transient middle cerebral artery occlusion. Stem Cell
5.5

Research and Therapy, 2022, 13, 21.
Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation. Materials Science and Engineering C, 2022, 133, 112639.
7.3

CT/bioluminescence dual-modal imaging tracking of stem cells labeled with Au@PEI@PEG nanotracers
4 and RfLuc in nintedanib-assisted pulmonary fibrosis therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 41, 102517.
<i>In vivo<|i>MRI tracking and therapeutic efficacy of transplanted mesenchymal stem cells labeled
5 with ferrimagnetic vortex iron oxide nanorings for liver fibrosis repair. Nanoscale, 2022, 14,
$5.6 \quad 4$
5227-5238.
Oligodendrocyte precursor cell transplantation promotes angiogenesis and remyelination via
$6 \quad$ Wnt $\mid\langle b\rangle \hat{I}^{2}\langle\mid b\rangle$-catenin pathway in a mouse model of middle cerebral artery occlusion. Journal of
$4.3 \quad 19$ Cerebral Blood Flow and Metabolism, 2022, 42, 757-770.

7 Recent Development of Conductive Hydrogels for Tissue Engineering: Review and Perspective.
$7 \quad$ Macromolecular Bioscience, 2022, 22, e2200051.
4.1

18

8 Auâ€"Pt nanozyme-based multifunctional hydrogel dressing for diabetic wound healing. , 2022, 137, 212869.

9 Development and Characterization of Complementary Polymer Network Bioinks for 3D Bioprinting of Soft Tissue Constructs. Macromolecular Bioscience, 2022, 22, .

Enhanced and long-term CT imaging tracking of transplanted stem cells labeled with
temperature-responsive gold nanoparticles. Journal of Materials Chemistry B, 2021, 9, 2854-2865.
5.8

16

$$
\begin{aligned}
& \text { Functionalized graphene oxide as a nanocarrier for multiple suppressive miRNAs to inhibit human } \\
& \text { intrahepatic cholangiocarcinoma. Nano Select, 2021, 2, 1372-1384. }
\end{aligned}
$$

Native and Bioengineered Exosomes for Ischemic Stroke Therapy. Frontiers in Cell and Developmental
$12 \quad$ Biology, 2021, 9, 619565.
3.7

41

Micro/nano materials regulate cell morphology and intercellular communication by extracellular vesicles. Acta Biomaterialia, 2021, 124, 130-138.

Bi-functional gold nanocages enhance specific immunological responses of foot-and-mouth disease
14 virus-like particles vaccine as a carrier and adjuvant. Nanomedicine: Nanotechnology, Biology, and
3.3

10
Medicine, 2021, 33, 102358.

15 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials, 2021, 272, 120771.
11.4

121

Tracking of Stem Cells in Pulmonary Fibrosis Treatment. Small, 2021, 17, e2101861.
19
20
M2 microglial small extracellular vesicles reduce glial scar formation <i>via</i> the miR-124/STAT3 pathway after ischemic stroke in mice. Theranostics, 2021, 11, 1232-1248.
10.0

90

Highly resilient, biocompatible, and antibacterial carbon nanotube/hydroxybutyl chitosan sponge dressing for rapid and effective hemostasis. Journal of Materials Chemistry B, 2021, 9, 9754-9763.
5.8

18

DNA-coated gold nanoparticles for tracking of hepatocyte growth factor secreted by transplanted
mesenchymal stem cells in pulmonary fibrosis therapy. Biomaterials Science, 2021 , ,
5.4

Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nature Communications, 2021,

Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility. Journal of Materials Chemistry B, 2021, 9, 10003-10014.
5.8

Oligodendrocyte Precursor Cells Transplantation Improves Stroke Recovery <i>via<|i>
Oligodendrogenesis, Neurite Growth and Synaptogenesis. , 2021, 12, 2096.

25 Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion.
Theranostics, 2020, 10, 74-90.
$10.0 \quad 106$

26 One-pot preparation of zwitterionic graphene nanosheets with exceptional redispersibility and its application in pickering emulsions. Carbon, 2020, 157, 448-456.
27 Oligodendrocyte precursor cells transplantation protects bloodâ $€^{\text {"brain }}$ barrier in a mouse model of 27 brain ischemia via Wnt/ $\hat{1}^{2}$-catenin signaling. Cell Death and Disease, 2020, $11,9$.
29 Endothelial progenitor cell transplantation alleviated ischemic brain injury via inhibiting C3/C3aR pathway in mice. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2374-2386.
4.3 17
30 Solventâ€€ontrolled Topological Evolution from Nanospheres to Superhelices. Small, 2020, 16, 2004756. 10.0 14
31 Fingolimod Inhibits Inflammation but Exacerbates Brain Edema in the Acute Phases of Cerebral Ischemia 2.8 14
in Diabetic Mice. Frontiers in Neuroscience, 2020, 14, 842.The Function of Astrocyte Mediated Extracellular Vesicles in Central Nervous System Diseases.Frontiers in Cell and Developmental Biology, 2020, 8, 568889.

Sestrin2 regulates microglia polarization through mTOR-mediated autophagic flux to attenuate
inflammation during experimental brain ischemia. Journal of Neuroinflammation, 2020, 17, 329.
7.2

52

Farnesoid X receptor knockout protects brain against ischemic injury through reducing neuronal apoptosis in mice. Journal of Neuroinflammation, 2020, 17, 164.

45
46

Reduction of Brain Injury After Stroke in Hyperglycemic Rats via Fasudil Pretreatment. Journal of
Shanghai Jiaotong University (Science), 2019, 24, 723-731.

CT/Bioluminescence Dualâ€Modal Imaging Tracking of Mesenchymal Stem Cells in Pulmonary Fibrosis.
Small, 2019, 15, e1904314.

Dynamic Detection of Thrombolysis in Embolic Stroke Rats by Synchrotron Radiation Angiography. Translational Stroke Research, 2019, 10, 695-704.

M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics, 2019, 9, 2910-2923.
10.0

301
exosomal mir-124. Theranostics, 2019, 9, 2910-2923.
6.7

41
49 poly(lactic-co-glycolic acid) nanofibrous membrane\< /p\>. International Journal of Nanomedicine, 2019, Volume 14, 1835-1847.

MicroRNA-126 Regulates Angiogenesis and Neurogenesis in a Mouse Model of Focal Cerebral Ischemia.
Molecular Therapy - Nucleic Acids, 2019, 16, 15-25.
5.1

61

Release of methylene blue from graphene oxide-coated electrospun nanofibrous scaffolds to
modulate functions of neural progenitor cells. Acta Biomaterialia, 2019, 88, 346-356.
8.3

25

Long-term <i> in vivo</i> CT tracking of mesenchymal stem cells labeled with Au@BSA@PLL
nanotracers. Nanoscale, 2019, 11, 20932-20941.
radio/photodynamic/photothermal synergistic therapy. Acta Biomaterialia, 2019, 84, 328-338.

Chondroinductive factor-free chondrogenic differentiation of human mesenchymal stem cells in
5.8

38 graphene oxide-incorporated hydrogels. Journal of Materials Chemistry B, 2018, 6, 908-917.

Ultrasmall graphene oxide based T1 MRI contrast agent for in vitro and in vivo labeling of human mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2475-2483.
61 Netrin-1 attenuates brain injury after middle cerebral artery occlusion via downregulation of$7.2 \quad 25$
Golden-star nanoparticles as adjuvant effectively promotes immune response to foot-and-mouthdisease virus-like particles vaccine. Vaccine, 2018, 36, 6752-6760.
HP-|̂2-CD Functionalized Fe<sub> $3</ s u b\rangle \mathrm{O}\langle s u b\rangle 4</$ sub>/CNPs-Based Theranostic Nanoplatform for$63 \mathrm{pH} /$ NIR Responsive Drug Release and MR/NIRFL Imaging-Guided Synergetic Chemo/Photothermal Therapyof Tumor. ACS Applied Materials \& Interfaces, 2018, 10, 33867-33878.
The effect of surface charge on the cytotoxicity and uptake of carbon quantum dots in human64 umbilical cord derived mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2018, 171,
65 cxcl12-engineered endothelial progenitor cells enhance neurogenesis and angiogenesis after ischemic brain injury in mice. Stem Cell Research and Therapy, 2018, 9, 139.
5.5 51
Blood-Brain Barrier Disruption Induced Cognitive Impairment Is Associated With Increase of3.4

Nanoformulation of metal complexes: Intelligent stimuli-responsive platforms for precisionOptical inhibition of striatal neurons promotes focal neurogenesis and neurobehavioral recovery in71 mice after middle cerebral artery occlusion. Journal of Cerebral Blood Flow and Metabolism, 2017, 37,

73	Indocyanine Green Loaded Magnetic Carbon Nanoparticles for Near Infrared Fluorescence/Magnetic Resonance Dual-Modal Imaging and Photothermal Therapy of Tumor. ACS Applied Materials \& Interfaces, 2017, 9, 9484-9495.	8.0	68
74	Hypoxia Response Element-Regulated MMP-9 Promotes Neurological Recovery via Clial Scar Degradation and Angiogenesis in Delayed Stroke. Molecular Therapy, 2017, 25, 1448-1459.	8.2	59
75	Monomeric CXCL12 outperforms its dimeric and wild type variants in the promotion of human endothelial progenitor cellsấ $\epsilon^{T M}$ function. Biochemical and Biophysical Research Communications, 2017, 488, 303-310.	2.1	13
76	Gram-scale synthesis of nanotherapeutic agents for CT/T1-weighted MRI bimodal imaging guided photothermal therapy. Nano Research, 2017, 10, 3124-3135.	10.4	11
77	Recent advances in cell-laden 3D bioprinting: materials, technologies and applications. Journal of 3D Printing in Medicine, 2017, 1, 245-268.	2.0	8
78	Accelerated biomineralization of graphene oxide â€" incorporated cellulose acetate nanofibrous scaffolds for mesenchymal stem cell osteogenesis. Colloids and Surfaces B: Biointerfaces, 2017, 159, 251-258.	5.0	43
79	Micro<scp>RNA</scp>â€ 37 and micro<scp>RNA</scp>â€ 195^{*} inhibit vasculogenesis in brain arteriovenous malformations. Annals of Neurology, 2017, 82, 371-384.	5.3	33
80	Optogenetic Inhibition of Striatal GABAergic Neuronal Activity Improves Outcomes After Ischemic Brain Injury. Stroke, 2017, 48, 3375-3383.	2.0	29
81	Optogenetic Inhibition of Striatal Neuronal Activity Improves the Survival of Transplanted Neural Stem Cells and Neurological Outcomes after Ischemic Stroke in Mice. Stem Cells International, 2017, 2017, 1-11.	2.5	19
82	Simultaneous Imaging of Cerebrovascular Structure and Function in Hypertensive Rats Using Synchrotron Radiation Angiography. Frontiers in Aging Neuroscience, 2017, 9, 359.	3.4	7
83	Increased Circulating Exosomal miRNA-223 Is Associated with Acute Ischemic Stroke. Frontiers in Neurology, 2017, 8, 57.	2.4	161
84	Contribution of Vascular Cells to Neointimal Formation. PLoS ONE, 2017, 12, e0168914.	2.5	38
85	Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1 $\hat{I}_{ \pm}$. Stem Cell Research and Therapy, 2017, 8, 163.	5.5	46

93 Quantum Dots (QDs) for Tumor Targeting Theranostics. , 2016, , 85-141.

96 Graphene for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2016, ,

97	Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Frontiers in Cellular Neuroscience, 2015, 9, 361.	3.7	74
98	pHâ€Responsive Cyanineâ€Grafted Graphene Oxide for Fluorescence Resonance Energy Transferâ€Enhanced Photothermal Therapy. Advanced Functional Materials, 2015, 25, 59-67.	14.9	122
99	Removal and recycling of ppm levels of methylene blue from an aqueous solution with graphene oxide. RSC Advances, 2015, 5, 27922-27932.	3.6	78
100	MRI/SPECT/Fluorescent Triâ€Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model. Advanced Functional Materials, 2015, 25, 1024-1034.	14.9	102
101	Silicon Phthalocyanine Covalently Functionalized N-Doped Ultrasmall Reduced Graphene Oxide Decorated with Pt Nanoparticles for Hydrogen Evolution from Water. ACS Applied Materials \& Interfaces, 2015, 7, 3732-3741.	8.0	65
102	Manganese Doped Iron Oxide Theranostic Nanoparticles for Combined <i>T<\|i><sub>1<\|sub> Magnetic Resonance Imaging and Photothermal Therapy. ACS Applied Materials \& Interfaces, 2015, 7, 4650-4658.	8.0	107
103	Photothermal Therapy: pHâ€Responsive Cyanineâ€Grafted Graphene Oxide for Fluorescence Resonance Energy Transferâ€Enhanced Photothermal Therapy (Adv. Funct. Mater. 1/2015). Advanced Functional Materials, 2015, 25, 58-58.	14.9	6
104	Enhanced Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells on Graphene Oxide-Incorporated Electrospun Poly(lactic-<i>co</i>-glycolic acid) Nanofibrous Mats. ACS Applied Materials \& Interfaces, 2015, 7, 6331-6339.	8.0	285
105	Stem Cells: MRI/SPECT/Fluorescent Tri-Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model (Adv. Funct. Mater.) Tj ETQq		

Rational Design and Synthesis of $\hat{3} F e<$ sub $>2</$ sub $>$ O<sub $>3</$ sub> @Au Magnetic Gold Nanoflowers for
Efficient Cancer Theranostics. Advanced Materials, 2015, 27, 5049-5056.

Design of a versatile nanocomposite for $\hat{a} €^{\sim}$ seeingâ $€^{T M}$ drug release and action behavior. Journal of Materials Chemistry B, 2015, 3, 8449-8458.

Synthesis of Gold Nanorods and Their Functionalization with Bovine Serum Albumin for Optical
Hyperthermia. Journal of Biomedical Nanotechnology, 2014, 10, 1440-1449.

Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochemical and Biophysical Research Communications, 2014, 444, 182-188.
2.1

163

Assessing <i>in vivo</i> toxicity of graphene materials: current methods and future outlook. Nanomedicine, 2014, 9, 1565-1580.

In Vitro Hemocompatibility and Toxic Mechanism of Graphene Oxide on Human Peripheral Blood T Lymphocytes and Serum Albumin. ACS Applied Materials \& Interfaces, 2014, 6, 19797-19807.
8.0

Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second
Near-Infrared Window. Journal of the American Chemical Society, 2014, 136, 15684-15693.
13.7

575

Rational design of a thermalresponsive-polymer-switchable FRET system for enhancing the temperature sensitivity of upconversion nanophosphors. Nanoscale, 2014, 6, 10179-10186.

PECylated carbon nanoparticles for efficient in vitro photothermal cancer therapy. Journal of Materials Chemistry B, 2014, 2, 2184-2192.

Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion. Neuroscience Letters, 2014, 579, 46-51.

Ultrasmall Graphene Oxide Supported Gold Nanoparticles as Adjuvants Improve Humoral and Cellular
Immunity in Mice. Advanced Functional Materials, 2014, 24, 6963-6971.
14.9

58

120 The inÂvitro and inÂvivo toxicity of graphene quantum dots. Biomaterials, 2014, 35, 5041-5048.
11.4

437

PLGA Hollow Microbubbles Loaded with Iron Oxide Nanoparticles and Doxorubicin for Dual-mode
US/MR Imaging and Drug Delivery. Current Nanoscience, 2014, 10, 543-552.

Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. Journal of Applied Toxicology, 2013, 33, 1156-1164.
2.8

178

Transferrin Modified Graphene Oxide for Clioma-Targeted Drug Delivery: In Vitro and in Vivo
Evaluations. ACS Applied Materials \& Interfaces, 2013, 5, 6909-6914.
8.0

160

Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy. Nanoscale, 2013, 5, 10591.

Synthesis, protein delivery, and in vitro and in vivo toxicity of a biodegradable poly(aminoester).
Toxicology Research, 2013, 2, 379.

Combination of TNF- $\mathrm{I} \pm$ and graphene oxide-loaded BEZ235 to enhance apoptosis of PIK3CA mutant colorectal cancer cells. Journal of Materials Chemistry B, 2013, 1, 5602.

PEGylated reduced graphene oxide as a superior ssRNA delivery system. Journal of Materials Chemistry
$\mathrm{B}, 2013,1,749-755$.

Graphene Oxide Based Theranostic Platform for $\langle\mathrm{i}\rangle \mathrm{T}\langle\mid \mathrm{i}\rangle\langle\mathrm{sub}\rangle 1\langle/$ sub>-Weighted Magnetic Resonance Imaging and Drug Delivery. ACS Applied Materials \& Interfaces, 2013, 5, 13325-13332.

Preparation of Graphene Quantum Dots for Bioimaging Application. Journal of Nanoscience and
129 Preparation of Graphene Quantum Dots
0.9

130 Biomedical Applications of Graphene. Theranostics, 2012, 2, 283-294.
10.0

827
PEGylated Graphene Oxide-Mediated Protein Delivery for Cell Function Regulation. ACS Applied Materials \& Interfaces, 2012, 4, 6317-6323.

Rotavirus capsid surface protein VP4-coated Fe3O4 nanoparticles as a theranostic platform for cellular imaging and drug delivery. Biomaterials, 2012, 33, 7895-7902.
11.4

> Mechanism of Cellular Uptake of Graphene Oxide Studied by Surfaceâ€Enhanced Raman Spectroscopy. Small, 2012, 8, 2577-2584.

Self-Assembled Virus-Like Particles from Rotavirus Structural Protein VP6 for Targeted Drug Delivery.
Bioconjugate Chemistry, 2011, 22, 346-352.

Polyamidoamine-Grafted Multiwalled Carbon Nanotubes for Gene Delivery: Synthesis, Transfection
and Intracellular Trafficking. Bioconjugate Chemistry, 2011, 22, 2237-2243.

Composites of Aminodextran-Coated $\mathrm{Fe}\langle\mathrm{sub}>3</ s u b>\mathrm{O}<$ sub>4</sub>Nanoparticles and Graphene Oxide
for Cellular Magnetic Resonance Imaging. ACS Applied Materials \& Interfaces, 2011, 3, 4085-4091.
8.0

276
137 Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide. Nanoscale, 2011, 3, 1446.

5.6

216

138 Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. Journal of Materials Chemistry, 2011, 21, 7736.
6.7

295

Enhanced Chemotherapy Efficacy by Sequential Delivery of siRNA and Anticancer Drugs Using
10.0

535
PElâ€Grafted Graphene Oxide. Small, 2011, 7, 460-464.

Accurate quantum mechanical study of the Renner-Teller effect in the singlet CH 2 . Journal of
140 Accurate quantum mechanical study of
Chemical Physics, 2011, 135, 154303.
3.0

15

Aqueousâ€Processable Noncovalent Chemically Converted Grapheneâ€"Quantum Dot Composites for
Flexible and Transparent Optoelectronic Films. Advanced Materials, 2010, 22, 638-642.
21.0

288

Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small, 2010, 6, 537-544.
10.0

1,544

Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis. Nanoscale, 2010, 2, 2733.
5.6

409

Low-temperature first-order reversal curves and interaction effects on assemblies of iron oxide nanoparticles. Physica B: Condensed Matter, 2009, 404, 3666-3670.
$\left.\begin{array}{lll}\text { Magnetic nanocarriers: from material design to magnetic manipulation. International Journal of } \\ 145 & \begin{array}{l}\text { Nanotechnology, 2008, 5, 1268. }\end{array} & 0.2 \\ 146 & \begin{array}{l}\text { Photophysics of dopamine-modified quantum dots and effects on biological systems. Nature Materials, } \\ \text { 2006, 5, 409-417. }\end{array} & 15 \\ \hline 147 & \begin{array}{l}\text { Atomic Force Microscopic Observation of the Molecular Orientation in Ultrathin Films of Alkanoic } \\ \text { Acid-Derivatized Porphyrins on a Mica Surface. Journal of Nanoscience and Nanotechnology, 2002, 2, } \\ \text { 37-40. }\end{array} & 27.5\end{array}\right\}$

[^0]: Source: https:/|exaly.com/author-pdf/7110555/publications.pdf
 Version: 2024-02-01

