List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/711046/publications.pdf Version: 2024-02-01

MATEIA EDDANI KDEET

#	Article	IF	CITATIONS
1	Differences in recipient ability of uropathogenic Escherichia coli strains in relation with their pathogenic potential. Infection, Genetics and Evolution, 2022, 97, 105160.	2.3	6
2	Genetic and correlative light and electron microscopy evidence for the unique differentiation pathway of erythrophores in brown trout skin. Scientific Reports, 2022, 12, 1015.	3.3	4
3	A Biomimetic Porcine Urothelial Model for Assessing Escherichia coli Pathogenicity. Microorganisms, 2022, 10, 783.	3.6	4
4	The Golgi complex: An organelle that determines urothelial cell biology in health and disease. Histochemistry and Cell Biology, 2022, 158, 229-240.	1.7	8
5	UV LIGHT INDUCED FLUORESCENCE RECOVERY OF GFP AFTER PHOTOBLEACHING IN MICROSCOPY IMAGING. Image Analysis and Stereology, 2022, 41, 161-169.	0.9	0
6	Increased fecal indole concentration in women with gestational diabetes: a pilot study. Acta Diabetologica, 2021, 58, 241-243.	2.5	3
7	Astrocytes in stress accumulate lipid droplets. Glia, 2021, 69, 1540-1562.	4.9	42
8	The Antibacterial Activity of Human Amniotic Membrane against Multidrug-Resistant Bacteria Associated with Urinary Tract Infections: New Insights from Normal and Cancerous Urothelial Models. Biomedicines, 2021, 9, 218.	3.2	18
9	Standardization of esophageal adenocarcinoma in vitro model and its applicability for model drug testing. Scientific Reports, 2021, 11, 6664.	3.3	5
10	Cytotoxic Activity of LLO Y406A Is Targeted to the Plasma Membrane of Cancer Urothelial Cells. International Journal of Molecular Sciences, 2021, 22, 3305.	4.1	3
11	PD1 blockade potentiates the therapeutic efficacy of photothermally-activated and MRI-guided low temperature-sensitive magnetoliposomes. Journal of Controlled Release, 2021, 332, 419-433.	9.9	11
12	Antimicrobial Activity of Human Fetal Membranes: From Biological Function to Clinical Use. Frontiers in Bioengineering and Biotechnology, 2021, 9, 691522.	4.1	14
13	Attachment of Cancer Urothelial Cells to the Bladder Epithelium Occurs on Uroplakin-Negative Cells and Is Mediated by Desmosomal and Not by Classical Cadherins. International Journal of Molecular Sciences, 2021, 22, 5565.	4.1	5
14	Detrimental Effect of Various Preparations of the Human Amniotic Membrane Homogenate on the 2D and 3D Bladder Cancer In vitro Models. Frontiers in Bioengineering and Biotechnology, 2021, 9, 690358.	4.1	6
15	Systematic Review of the Application of Perinatal Derivatives in Animal Models on Cutaneous Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 742858.	4.1	10
16	In Vitro Ciliotoxicity and Cytotoxicity Testing of Repeated Chronic Exposure to Topical Nasal Formulations for Safety Studies. Pharmaceutics, 2021, 13, 1750.	4.5	3
17	The Role of Innate Immune System in the Human Amniotic Membrane and Human Amniotic Fluid in Protection Against Intra-Amniotic Infections and Inflammation. Frontiers in Immunology, 2021, 12, 735324.	4.8	9
18	Proposing Urothelial and Muscle In Vitro Cell Models as a Novel Approach for Assessment of Long-Term Toxicity of Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 7545.	4.1	5

#	Article	IF	CITATIONS
19	Human Amniotic Membrane Enriched with Urinary Bladder Fibroblasts Promote the Re-Epithelization of Urothelial Injury. Cell Transplantation, 2020, 29, 096368972094666.	2.5	8
20	Different Culture Conditions Affect Drug Transporter Gene Expression, Ultrastructure, and Permeability of Primary Human Nasal Epithelial Cells. Pharmaceutical Research, 2020, 37, 170.	3.5	9
21	The Cells and Extracellular Matrix of Human Amniotic Membrane Hinder the Growth and Invasive Potential of Bladder Urothelial Cancer Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 554530.	4.1	11
22	Ciliary beat frequency of in vitro human nasal epithelium measured with the simple high-speed microscopy is applicable for safety studies of nasal drug formulations. Toxicology in Vitro, 2020, 66, 104865.	2.4	14
23	Magneto-Liposomes as MRI Contrast Agents: A Systematic Study of Different Liposomal Formulations. Nanomaterials, 2020, 10, 889.	4.1	28
24	Escherichia coli Isolated from Cases of Colibacillosis in Russian Poultry Farms (Perm Krai): Sensitivity to Antibiotics and Bacteriocins. Microorganisms, 2020, 8, 741.	3.6	13
25	Polyelectrolyte–surfactant–complex nanoparticles as a delivery platform for poorly soluble drugs: A case study of ibuprofen loaded cetylpyridinium-alginate system. International Journal of Pharmaceutics, 2020, 580, 119199.	5.2	15
26	Vitamin A Rich Diet Diminishes Early Urothelial Carcinogenesis by Altering Retinoic Acid Signaling. Cancers, 2020, 12, 1712.	3.7	11
27	Combined lectin- and immuno-histochemistry (CLIH) for applications in cell biology and cancer diagnosis: Analysis of human urothelial carcinomas. European Journal of Histochemistry, 2020, 64, .	1.5	6
28	Nationwide analysis of Mycobacterium chimaera and Mycobacterium intracellulare isolates: Frequency, clinical importance, and molecular and phenotypic resistance profiles. Infection, Genetics and Evolution, 2020, 82, 104311.	2.3	8
29	Amniotic Membrane Preparation Crucially Affects Its Broad-Spectrum Activity Against Uropathogenic Bacteria. Frontiers in Microbiology, 2020, 11, 469.	3.5	21
30	Current and innovative approaches in the treatment of non-muscle invasive bladder cancer: the role of transurethral resection of bladder tumor and organoids. Radiology and Oncology, 2020, 54, 135-143.	1.7	10
31	Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Frontiers in Bioengineering and Biotechnology, 2020, 8, 610544.	4.1	68
32	Triple labelling of actin filaments, intermediate filaments and microtubules for broad application in cell biology: uncovering the cytoskeletal composition in tunneling nanotubes. Histochemistry and Cell Biology, 2019, 152, 311-317.	1.7	23
33	Antibiotic Resistance, Virulence Factors, Phenotyping, and Genotyping of E. coli Isolated from the Feces of Healthy Subjects. Microorganisms, 2019, 7, 251.	3.6	43
34	Association between pre-pregnancy body weight and dietary pattern with large-for-gestational-age infants in gestational diabetes. Diabetology and Metabolic Syndrome, 2019, 11, 68.	2.7	5
35	Demonstrating suitability of the Caco-2 cell model for BCS-based biowaiver according to the recent FDA and ICH harmonised guidelines. Journal of Pharmacy and Pharmacology, 2019, 71, 1231-1242.	2.4	23
36	Multimodal magnetic nanoparticles for biomedical applications: importance of characterization on biomimetic in vitro models. , 2019, , 241-283.		0

#	Article	IF	CITATIONS
37	Intracellular Activation of a Prostate Specific Antigen-Cleavable Doxorubicin Prodrug: A Key Feature Toward Prodrug-Nanomedicine Design. Molecular Pharmaceutics, 2019, 16, 1573-1585.	4.6	11
38	>Different Effects Of Amniotic Membrane Homogenate On The Growth Of Uropathogenic Escherichia coli , Staphylococcus aureus And Serratia marcescens . Infection and Drug Resistance, 2019, Volume 12, 3365-3375.	2.7	12
39	Amnijska membrana kot bioloÅ _i ki nosilec, njena priprava in uporaba v regenerativni medicini v Sloveniji. ZdravniÅ _i ki Vestnik, 2019, 87, .	0.1	0
40	Magnetic interactions and <i>in vitro</i> study of biocompatible hydrocaffeic acid-stabilized Fe–Pt clusters as MRI contrast agents. RSC Advances, 2018, 8, 14694-14704.	3.6	9
41	Human Amniotic Membrane and Amniotic Membrane–Derived Cells. Cell Transplantation, 2018, 27, 77-92.	2.5	46
42	Detonation nanodiamonds are promising nontoxic delivery system for urothelial cells. Protoplasma, 2018, 255, 419-423.	2.1	7
43	Increased endocytosis of magnetic nanoparticles into cancerous urothelial cells versus normal urothelial cells. Histochemistry and Cell Biology, 2018, 149, 45-59.	1.7	30
44	Hybrid FePt/SiO ₂ /Au nanoparticles as a theranostic tool: <i>in vitro</i> photo-thermal treatment and MRI imaging. Nanoscale, 2018, 10, 1308-1321.	5.6	20
45	Coâ€culturing porcine normal urothelial cells, urinary bladder fibroblasts and smooth muscle cells for tissue engineering research. Cell Biology International, 2018, 42, 411-424.	3.0	15
46	Helical organization of microtubules occurs in a minority of tunneling membrane nanotubes in normal and cancer urothelial cells. Scientific Reports, 2018, 8, 17133.	3.3	21
47	Reuse of bladder mucosa explants provides a long lasting source of urothelial cells for the establishment of differentiated urothelia. Histochemistry and Cell Biology, 2018, 150, 567-574.	1.7	2
48	CeliÄno-bioloÅįki mehanizmi delovanja amnijske membrane proti raku in možnosti za njeno uporabo pri zdravljenju raka. ZdravniÅįki Vestnik, 2018, 87, 483-492.	0.1	0
49	Iron uptake and bacteriocin genes among <i>Escherichia coli</i> strains from skin and softâ€ŧissue infections. Apmis, 2017, 125, 264-267.	2.0	2
50	Differentiation-dependent rearrangements of actin filaments and microtubules hinder apical endocytosis in urothelial cells. Histochemistry and Cell Biology, 2017, 148, 143-156.	1.7	19
51	Chitosan hydrochloride has no detrimental effect on bladder urothelial cancer cells. Toxicology in Vitro, 2017, 44, 403-413.	2.4	11
52	Uroplakin traffic through the Golgi apparatus induces its fragmentation: new insights from novel in vitro models. Scientific Reports, 2017, 7, 12842.	3.3	19
53	Commentary: Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and its Impact on Avian Pathogenic Escherichia coli (APEC) Classification. Frontiers in Microbiology, 2017. 8. 1904.	3.5	3
54	In vitro assessment of potential bladder papillary neoplasm treatment with functionalized polyethyleneimine coated magnetic nanoparticles. Acta Chimica Slovenica, 2017, 64, 543-548.	0.6	2

#	Article	IF	CITATIONS
55	isolated from feces of brown bears have a lower prevalence of human extraintestinal pathogenic virulence-associated genes. Canadian Journal of Veterinary Research, 2017, 81, 59-63.	0.2	2
56	Biocompatibility of different nanostructured TiO2 scaffolds and their potential for urologic applications. Protoplasma, 2016, 253, 1439-1447.	2.1	16
57	Comparative lipidomic study of urothelial cancer models: association with urothelial cancer cell invasiveness. Molecular BioSystems, 2016, 12, 3266-3279.	2.9	11
58	Characterisation of plasmalemmal shedding of vesicles induced by the cholesterol/sphingomyelin binding protein, ostreolysin A-mCherry. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2882-2893.	2.6	19
59	Adipose-Derived Stem Cells Respond to Increased Osmolarities. PLoS ONE, 2016, 11, e0163870.	2.5	8
60	Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids. Journal of Anatomy, 2015, 227, 583-595.	1.5	27
61	Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes. International Journal of Nanomedicine, 2015, 10, 6089.	6.7	7
62	Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles. International Journal of Nanomedicine, 2015, 10, 1449.	6.7	32
63	Highly Selective Anti-Cancer Activity of Cholesterol-Interacting Agents Methyl-β-Cyclodextrin and Ostreolysin A/Pleurotolysin B Protein Complex on Urothelial Cancer Cells. PLoS ONE, 2015, 10, e0137878.	2.5	51
64	Strain ŽP — the first bacterial conjugation-based "killâ€â€""anti-kill―antimicrobial system. Plasmid, 2 82, 28-34.	2015, 1.4	11
65	The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function. European Journal of Pharmaceutical Sciences, 2015, 69, 1-9.	4.0	106
66	The complete functional recovery of chitosan-treated biomimetic hyperplastic and normoplastic urothelial models. Histochemistry and Cell Biology, 2015, 143, 95-107.	1.7	29
67	Epithelial–Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2015, 21, 521-530.	4.8	12
68	Virulence potential for extraintestinal infections among commensal Escherichia coli isolated from healthy humans—the Trojan horse within our gut. FEMS Microbiology Letters, 2015, 362, .	1.8	29
69	Properties of the Urothelium that Establish the Blood–Urine Barrier and Their Implications for Drug Delivery. Reviews of Physiology, Biochemistry and Pharmacology, 2015, 168, 1-29.	1.6	25
70	The Characterization of the Human Nasal Epithelial Cell Line RPMI 2650 Under Different Culture Conditions and Their Optimization for an Appropriate in vitro Nasal Model. Pharmaceutical Research, 2015, 32, 665-679.	3.5	63
71	Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells. Photochemical and Photobiological Sciences, 2015, 14, 583-590.	2.9	26
72	Amniotic Membrane Scaffolds Enable the Development of Tissue-Engineered Urothelium with Molecular and Ultrastructural Properties Comparable to that of Native Urothelium. Tissue Engineering - Part C: Methods, 2014, 20, 317-327.	2.1	50

#	Article	IF	CITATIONS
73	A Novel Strain of Porcine Adenovirus Detected in Urinary Bladder Urothelial Cell Culture. Viruses, 2014, 6, 2505-2518.	3.3	13
74	Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models. Protoplasma, 2014, 251, 49-59.	2.1	27
75	Amniotic membrane properties and current practice of amniotic membrane use in ophthalmology in Slovenia. Cell and Tissue Banking, 2014, 15, 177-192.	1.1	22
76	Molecular ultrastructure of the urothelial surface: Insights from a combination of various microscopic techniques. Microscopy Research and Technique, 2014, 77, 896-901.	2.2	10
77	Air–liquid and liquid–liquid interfaces influence the formation of the urothelial permeability barrier in vitro. In Vitro Cellular and Developmental Biology - Animal, 2013, 49, 196-204.	1.5	24
78	Intracellular trafficking of solid lipid nanoparticles and their distribution between cells through tunneling nanotubes. European Journal of Pharmaceutical Sciences, 2013, 50, 139-148.	4.0	16
79	Targeting intracellular compartments by magnetic polymeric nanoparticles. European Journal of Pharmaceutical Sciences, 2013, 50, 130-138.	4.0	40
80	Gold nanoparticles as physiological markers of urine internalization into urothelial cells in vivo. International Journal of Nanomedicine, 2013, 8, 3945.	6.7	11
81	Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces. Croatian Medical Journal, 2012, 53, 577-585.	0.7	11
82	Colicin insensitivity correlates with a higher prevalence of extraintestinal virulence factors among Escherichia coli isolates from skin and soft-tissue infections. Journal of Medical Microbiology, 2012, 61, 762-765.	1.8	13
83	Freeze-Fracture Replica Immunolabelling Reveals Urothelial Plaques in Cultured Urothelial Cells. PLoS ONE, 2012, 7, e38509.	2.5	22
84	Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance. Histochemistry and Cell Biology, 2012, 137, 177-186.	1.7	47
85	Pumpkin fruit, seed and oil yield is independent of fruit or seed photosynthesis. Journal of Agricultural Science, 2011, 149, 753-760.	1.3	5
86	Formation and maintenance of blood–urine barrier in urothelium. Protoplasma, 2010, 246, 3-14.	2.1	76
87	Toxicological Aspects of Longâ€Term Treatment of Keratinocytes with ZnO and TiO ₂ Nanoparticles. Small, 2010, 6, 1908-1917.	10.0	186
88	Prevalence and Associations of <i>tcpC</i> , a Gene Encoding a Toll/Interleukin-1 Receptor Domain-Containing Protein, among <i>Escherichia coli</i> Urinary Tract Infection, Skin and Soft Tissue Infection, and Commensal Isolates. Journal of Clinical Microbiology, 2010, 48, 966-968.	3.9	20
89	Colgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biology of the Cell, 2010, 102, 593-607.	2.0	53
90	Apical Plasma Membrane Traffic in Superficial Cells of Bladder Urothelium. Annals of the New York Academy of Sciences, 2009, 1152, 18-29.	3.8	52

#	ARTICLE	IF	CITATIONS
91	Endocytotic activity of bladder superficial urothelial cells is inversely related to their differentiation stage. Differentiation, 2009, 77, 48-59.	1.9	48
92	Trafficking Of Glutamatergic And Peptidergic Vesicles In Astrocytes. Biophysical Journal, 2009, 96, 33a.	0.5	0
93	Stimulation inhibits the mobility of recycling peptidergic vesicles in astrocytes. Clia, 2008, 56, 135-144.	4.9	55
94	Growth and differentiation of alveolar bone cells in tissueâ€engineered constructs and monolayer cultures. Biotechnology and Bioengineering, 2008, 100, 773-781.	3.3	16
95	Differentiation-dependent Golgi fragmentation in the bladder urothelial cells in vitro. , 2008, , 161-162.		0
96	Chloramphenicol- and tetracycline-resistant uropathogenic Escherichia coli (UPEC) exhibit reduced virulence potential. International Journal of Antimicrobial Agents, 2007, 30, 436-442.	2.5	20
97	Ca2+-dependent mobility of vesicles capturing anti-VGLUT1 antibodies. Experimental Cell Research, 2007, 313, 3809-3818.	2.6	67
98	Distribution of junction- and differentiation-related proteins in urothelial cells at the leading edge of primary explant outgrowths. Histochemistry and Cell Biology, 2006, 125, 475-485.	1.7	24
99	High Prevalence of Multidrug Resistance and Random Distribution of Mobile Genetic Elements Among Uropathogenic Escherichia coli (UPEC) of the Four Major Phylogenetic Groups. Current Microbiology, 2006, 53, 158-162.	2.2	61
100	Urothelial injuries and the early wound healing response: tight junctions and urothelial cytodifferentiation. Histochemistry and Cell Biology, 2005, 123, 529-539.	1.7	68
101	Establishment and characterization of primary and subsequent subcultures of normal mouse urothelial cells. Folia Biologica, 2005, 51, 126-32.	0.6	13
102	Identification of the origin of replications and partial characterization of plasmid pRK100. Plasmid, 2003, 50, 102-112.	1.4	13
103	ANTIGENIC AND ULTRASTRUCTURAL MARKERS ASSOCIATED WITH UROTHELIAL CYTODIFFERENTIATION IN PRIMARY EXPLANT OUTGROWTHS OF MOUSE BLADDER. Cell Biology International, 2002, 26, 63-74.	3.0	35
104	The effect of lamina propria on the growth and differentiation of urothelial cells in vitro. Pflugers Archiv European Journal of Physiology, 2000, 440, R181-R182.	2.8	4
105	The effect of epidermal growth factor and transforming growth factor β ₁ on proliferation and differentiation of urothelial cells in urinary bladder explant culture. Biology of the Cell, 1997, 89, 263-271.	2.0	8
106	The effect of epidermal growth factor and transforming growth factor β1 on proliferation and differentiation of urothelial cells in urinary bladder explant culture. Biology of the Cell, 1997, 89, 263-271.	2.0	11
107	The effect of epidermal growth factor and transforming growth factor beta 1 on proliferation and differentiation of urothelial cells in urinary bladder explant culture. Biology of the Cell, 1997, 89, 263-71.	2.0	4