Greg Hussack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7110352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile Affinity Maturation of Single-Domain Antibodies Using Next-Generation DNA Sequencing. Methods in Molecular Biology, 2022, 2446, 245-268.	0.9	3
2	Structural Characterization and Evaluation of an Epitope at the Tip of the A-Band Rhamnan Polysaccharide of <i>Pseudomonas aeruginosa</i> . ACS Infectious Diseases, 2022, 8, 1336-1346.	3.8	3
3	Brain Delivery of IGF1R5, a Single-Domain Antibody Targeting Insulin-like Growth Factor-1 Receptor. Pharmaceutics, 2022, 14, 1452.	4.5	16
4	Incorporation of a Novel CD16-Specific Single-Domain Antibody into Multispecific Natural Killer Cell Engagers With Potent ADCC. Molecular Pharmaceutics, 2021, 18, 2375-2384.	4.6	14
5	Antibody Binding to the O-Specific Antigen of Pseudomonas aeruginosa O6 Inhibits Cell Growth. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
6	Serum albuminâ€binding V _H Hs with variable pH sensitivities enable tailored halfâ€life extension of biologics. FASEB Journal, 2020, 34, 8155-8171.	0.5	26
7	Single-Domain Antibodies Represent Novel Alternatives to Monoclonal Antibodies as Targeting Agents against the Human Papillomavirus 16 E6 Protein. International Journal of Molecular Sciences, 2019, 20, 2088.	4.1	12
8	Camelid single-domain antibodies raised by DNA immunization are potent inhibitors of EGFR signaling. Biochemical Journal, 2019, 476, 39-50.	3.7	22
9	Application of Assisted Design of Antibody and Protein Therapeutics (ADAPT) improves efficacy of a Clostridium difficile toxin A single-domain antibody. Scientific Reports, 2018, 8, 2260.	3.3	36
10	Neutralization of Clostridium difficile toxin B with VHH-Fc fusions targeting the delivery and CROPs domains. PLoS ONE, 2018, 13, e0208978.	2.5	20
11	Isolation and characterization of camelid single-domain antibodies against HER2. BMC Research Notes, 2018, 11, 866.	1.4	10
12	A disulfide-stabilized human V L single-domain antibody library is a source of soluble and highly thermostable binders. Molecular Immunology, 2017, 90, 190-196.	2.2	16
13	A Novel Affinity Tag, ABTAG, and Its Application to the Affinity Screening of Single-Domain Antibodies Selected by Phage Display. Frontiers in Immunology, 2017, 8, 1406.	4.8	9
14	Stability-Diversity Tradeoffs Impose Fundamental Constraints on Selection of Synthetic Human VH/VL Single-Domain Antibodies from In Vitro Display Libraries. Frontiers in Immunology, 2017, 8, 1759.	4.8	16
15	An update on antibody-based immunotherapies for Clostridium difficile infection. Clinical and Experimental Gastroenterology, 2016, Volume 9, 209-224.	2.3	20
16	A Rational Engineering Strategy for Designing Protein A-Binding Camelid Single-Domain Antibodies. PLoS ONE, 2016, 11, e0163113.	2.5	24
17	Isolation of TGF-β-neutralizing single-domain antibodies of predetermined epitope specificity using next-generation DNA sequencing. Protein Engineering, Design and Selection, 2016, 29, 439-443.	2.1	25
18	Targeting surface-layer proteins with single-domain antibodies: a potential therapeutic approach against Clostridium difficile-associated disease. Applied Microbiology and Biotechnology, 2015, 99, 8549-8562.	3.6	25

GREG HUSSACK

#	Article	IF	CITATIONS
19	Identification of cross-reactive single-domain antibodies against serum albumin using next-generation DNA sequencing. Protein Engineering, Design and Selection, 2015, 28, 379-383.	2.1	29
20	Structural Basis for Antibody Recognition in the Receptor-binding Domains of Toxins A and B from Clostridium difficile. Journal of Biological Chemistry, 2014, 289, 2331-2343.	3.4	43
21	Isolation and Characterization of Clostridium difficile Toxin-Specific Single-Domain Antibodies. , 2012, 911, 211-239.		24
22	A VL single-domain antibody library shows a high-propensity to yield non-aggregating binders. Protein Engineering, Design and Selection, 2012, 25, 313-318.	2.1	30
23	Characterization of Single-Domain Antibodies with an Engineered Disulfide Bond. Methods in Molecular Biology, 2012, 911, 417-429.	0.9	11
24	Engineered Single-Domain Antibodies with High Protease Resistance and Thermal Stability. PLoS ONE, 2011, 6, e28218.	2.5	113
25	Neutralization of Clostridium difficile Toxin A with Single-domain Antibodies Targeting the Cell Receptor Binding Domain. Journal of Biological Chemistry, 2011, 286, 8961-8976.	3.4	119
26	Toxin-Specific Antibodies for the Treatment of Clostridium difficile: Current Status and Future Perspectives. Toxins, 2010, 2, 998-1018.	3.4	45