
Ricardo C RodrÃ-guez De La Vega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7110338/publications.pdf Version: 2024-02-01

Ricardo C RodrÃguez De La

#	Article	IF	CITATIONS
1	Onset and stepwise extensions of recombination suppression are common in matingâ€ŧype chromosomes of <i>Microbotryum</i> antherâ€smut fungi. Journal of Evolutionary Biology, 2022, 35, 1619-1634.	1.7	11
2	Tempo of Degeneration Across Independently Evolved Nonrecombining Regions. Molecular Biology and Evolution, 2022, 39, .	8.9	9
3	Draft Genome Sequences of Nitrogen-Fixing Bradyrhizobia Isolated from Root Nodules of Peanut, Arachis hypogaea, Cultivated in Southern Tunisia. Microbiology Resource Announcements, 2021, 10, e0043421.	0.6	1
4	Higher Gene Flow in Sex-Related Chromosomes than in Autosomes during Fungal Divergence. Molecular Biology and Evolution, 2020, 37, 668-682.	8.9	19
5	Domestication of the Emblematic White Cheese-Making Fungus Penicillium camemberti and Its Diversification into Two Varieties. Current Biology, 2020, 30, 4441-4453.e4.	3.9	58
6	A Venomics Approach Coupled to High-Throughput Toxin Production Strategies Identifies the First Venom-Derived Melanocortin Receptor Agonists. Journal of Medicinal Chemistry, 2020, 63, 8250-8264.	6.4	13
7	Independent domestication events in the blueâ€cheese fungus <i>Penicillium roqueforti</i> . Molecular Ecology, 2020, 29, 2639-2660.	3.9	45
8	Understanding Adaptation, Coevolution, Host Specialization, and Mating System in Castrating Anther-Smut Fungi by Combining Population and Comparative Genomics. Annual Review of Phytopathology, 2019, 57, 431-457.	7.8	23
9	Phylogeography of the Bradyrhizobium spp. Associated With Peanut, Arachis hypogaea: Fellow Travelers or New Associations?. Frontiers in Microbiology, 2019, 10, 2041.	3.5	11
10	Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Research, 2019, 29, 944-953.	5.5	21
11	Cause and Effectors: Whole-Genome Comparisons Reveal Shared but Rapidly Evolving Effector Sets among Host-Specific Plant-Castrating Fungi. MBio, 2019, 10, .	4.1	27
12	Multiple convergent supergene evolution events in mating-type chromosomes. Nature Communications, 2018, 9, 2000.	12.8	81
13	A genome scan of diversifying selection in <i>Ophiocordyceps</i> zombieâ€ant fungi suggests a role for enterotoxins in coâ€evolution and host specificity. Molecular Ecology, 2018, 27, 3582-3598.	3.9	22
14	Gene Presence–Absence Polymorphism in Castrating Anther-Smut Fungi: Recent Gene Gains and Phylogeographic Structure. Genome Biology and Evolution, 2018, 10, 1298-1314.	2.5	23
15	Coevolution takes the sting out of it: Evolutionary biology and mechanisms of toxin resistance in animals. Toxicon, 2017, 140, 118-131.	1.6	60
16	Evolutionary strata on young mating-type chromosomes despite the lack of sexual antagonism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7067-7072.	7.1	92
17	Solution structure and antiparasitic activity of scorpineâ€like peptides from <i>Hoffmannihadrurus gertschi</i> . FEBS Letters, 2016, 590, 2286-2296.	2.8	20
18	Intragenome Diversity of Gene Families Encoding Toxin-like Proteins in Venomous Animals. Integrative and Comparative Biology, 2016, 56, 938-949.	2.0	14

Ricardo C RodrÃguez De La

#	Article	IF	CITATIONS
19	Diversity and Mechanisms of Genomic Adaptation in Penicillium. , 2016, , 27-42.		13
20	CHAPTER 7. Scorpion Venoms as a Platform for Drug Development. RSC Drug Discovery Series, 2015, , 204-220.	0.3	2
21	Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi. Current Biology, 2015, 25, 2562-2569.	3.9	110
22	Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Molecular Ecology, 2014, 23, 753-773.	3.9	203
23	Scorpion Peptides. , 2013, , 423-429.		15
24	Molecular evidence for an Asian origin of monitor lizards followed by Tertiary dispersals to Africa and Australasia. Biology Letters, 2012, 8, 853-855.	2.3	65
25	Vm24, a Natural Immunosuppressive Peptide, Potently and Selectively Blocks Kv1.3 Potassium Channels of Human T Cells. Molecular Pharmacology, 2012, 82, 372-382.	2.3	83
26	Structure, Function, and Chemical Synthesis of <i>Vaejovis mexicanus</i> Peptide 24: A Novel Potent Blocker of Kv1.3 Potassium Channels of Human T Lymphocytes. Biochemistry, 2012, 51, 4049-4061.	2.5	51
27	Sex in Cheese: Evidence for Sexuality in the Fungus Penicillium roqueforti. PLoS ONE, 2012, 7, e49665.	2.5	40
28	New Tricks of an Old Pattern. Journal of Biological Chemistry, 2012, 287, 12321-12330.	3.4	48
29	Target Promiscuity and Heterogeneous Effects of Tarantula Venom Peptides Affecting Na+ and K+ Ion Channels. Journal of Biological Chemistry, 2010, 285, 4130-4142.	3.4	84
30	Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels Journal of Biological Chemistry, 2010, 285, 13314.	3.4	0
31	Mining on scorpion venom biodiversity. Toxicon, 2010, 56, 1155-1161.	1.6	158
32	The Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms. Annual Review of Genomics and Human Genetics, 2009, 10, 483-511.	6.2	683
33	Cytolytic and K+ channel blocking activities of β-KTx and scorpine-like peptides purified from scorpion venoms. Cellular and Molecular Life Sciences, 2008, 65, 187-200.	5.4	88
34	Proteomic analysis of the venom from the fish eating coral snake <i>Micrurus surinamensis</i> : Novel toxins, their function and phylogeny. Proteomics, 2008, 8, 1919-1932.	2.2	70
35	A selective blocker of Kv1.2 and Kv1.3 potassium channels from the venom of the scorpion Centruroides suffusus suffusus. Biochemical Pharmacology, 2008, 76, 1142-1154.	4.4	46
36	Novel paradigms on scorpion toxins that affects the activating mechanism of sodium channels. Toxicon, 2007, 49, 171-180.	1.6	52

#	Article	IF	CITATIONS
37	Wide phylogenetic distribution of Scorpine and long-chain β-KTx-like peptides in scorpion venoms: Identification of "orphan―components. Peptides, 2007, 28, 31-37.	2.4	74
38	Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida:) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5

39	K+ Channel Blockers: Novel Tools to Inhibit T Cell Activation Leading to Specific Immunosuppression. Current Pharmaceutical Design, 2006, 12, 2199-2220.	1.9	89
40	Scorpion Venom Peptides. , 2006, , 339-354.		15
41	On the evolution of invertebrate defensins. Trends in Genetics, 2005, 21, 330-332.	6.7	49
42	A Note on the Evolution of Spider Toxins Containing the Ick-Motif. Toxin Reviews, 2005, 24, 383-395.	3.4	14
43	Anuroctoxin, a New Scorpion Toxin of the α-KTx 6 Subfamily, Is Highly Selective for Kv1.3 over IKCa1 Ion Channels of Human T Lymphocytes. Molecular Pharmacology, 2005, 67, 1034-1044.	2.3	58
44	Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure–function relationships and evolution. Toxicon, 2005, 46, 831-844.	1.6	332
45	NMR solution structure of Cn12, a novel peptide from the Mexican scorpion Centruroides noxius with a typical beta-toxin sequence but with alpha-like physiological activity. FEBS Journal, 2004, 271, 2504-2516.	0.2	19
46	Antimicrobial peptide induction in the haemolymph of the Mexican scorpion Centruroides limpidus limpidus in response to septic injury. Cellular and Molecular Life Sciences, 2004, 61, 1507-1519.	5.4	51
47	Current views on scorpion toxins specific for K+-channels. Toxicon, 2004, 43, 865-875.	1.6	339
48	Novel interactions between K+ channels and scorpion toxins. Trends in Pharmacological Sciences, 2003, 24, 222-227.	8.7	165
49	Response to Xu et al.: Hypothesis-driven science paves the way for new discoveries. Trends in Pharmacological Sciences, 2003, 24, 448-449.	8.7	7
50	Two novel toxins from the Amazonian scorpion Tityus cambridgei that block Kv1.3 and Shaker B K+-channels with distinctly different affinities. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1601, 123-131.	2.3	74