

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7109651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome evolution of a nonparasitic secondary heterotroph, the diatom <i>Nitzschia putrida</i> . Science Advances, 2022, 8, eabi5075.	10.3	9
2	Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity. New Phytologist, 2021, 229, 3424-3439.	7.3	24
3	Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus. PLoS Genetics, 2021, 17, e1009386.	3.5	46
4	Host-interactor screens of <i>Phytophthora infestans</i> RXLR proteins reveal vesicle trafficking as a major effector-targeted process. Plant Cell, 2021, 33, 1447-1471.	6.6	46
5	A single amino acid polymorphism in a conserved effector of the multihost blast fungus pathogen expands host-target binding spectrum. PLoS Pathogens, 2021, 17, e1009957.	4.7	32
6	Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus. BMC Biology, 2020, 18, 88.	3.8	45
7	A Clone Resource of <i>Magnaporthe oryzae</i> Effectors That Share Sequence and Structural Similarities Across Host-Specific Lineages. Molecular Plant-Microbe Interactions, 2020, 33, 1032-1035.	2.6	20
8	Genome Sequences of Plant-Associated Rhodococcus sp. Isolates from Tunisia. Microbiology Resource Announcements, 2020, 9, .	0.6	2
9	Divergent Evolution of PcF/SCR74 Effectors in Oomycetes Is Associated with Distinct Recognition Patterns in Solanaceous Plants. MBio, 2020, 11, .	4.1	11
10	Extracellular proteolytic cascade in tomato activates immune protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17409-17417.	7.1	55
11	Functional analysis of RXLR effectors from the New Zealand kauri dieback pathogen <i>Phytophthora agathidicida</i> . Molecular Plant Pathology, 2020, 21, 1131-1148.	4.2	13
12	A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif. Nature Communications, 2019, 10, 1576.	12.8	55
13	Cautionary Notes on Use of the MoT3 Diagnostic Assay for <i>Magnaporthe oryzae</i> Wheat and Rice Blast Isolates. Phytopathology, 2019, 109, 504-508.	2.2	23
14	An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. ELife, 2019, 8, .	6.0	162
15	A New Resistance Gene in Combination with <i>Rmg8</i> Confers Strong Resistance Against <i>Triticum</i> Isolates of <i>Pyricularia oryzae</i> in a Common Wheat Landrace. Phytopathology, 2018, 108, 1299-1306.	2.2	50
16	Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports, 2017, 7, 482.	3.3	525
17	Protein–Protein Interaction Assays with Effector–GFP Fusions in Nicotiana benthamiana. Methods in Molecular Biology, 2017, 1659, 85-98.	0.9	8
18	Comparative secretome analysis of Rhizoctonia solani isolates with different host ranges reveals unique secretomes and cell death inducing effectors. Scientific Reports, 2017, 7, 10410.	3.3	62

#	Article	IF	CITATIONS
19	Genome analysis of the foxtail millet pathogen Sclerospora graminicola reveals the complex effector repertoire of graminicolous downy mildews. BMC Genomics, 2017, 18, 897.	2.8	27
20	An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. ELife, 2016, 5, .	6.0	189
21	Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE, 2016, 11, e0149035.	2.5	99
22	Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cellular Microbiology, 2016, 18, 453-465.	2.1	90
23	Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biology, 2016, 14, 84.	3.8	355
24	Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC Genomics, 2015, 16, 741.	2.8	135
25	A Recent Expansion of the RXLR Effector Gene <i>Avrblb2</i> Is Maintained in Global Populations of <i>Phytophthora infestans</i> Indicating Different Contributions to Virulence. Molecular Plant-Microbe Interactions, 2015, 28, 901-912.	2.6	44
26	Candidate Effector Proteins of the Rust Pathogen <i>Melampsora larici-populina</i> Target Diverse Plant Cell Compartments. Molecular Plant-Microbe Interactions, 2015, 28, 689-700.	2.6	172
27	<i>Phytophthora infestans</i> RXLR Effector PexRD2 Interacts with Host MAPKKKε to Suppress Plant Immune Signaling. Plant Cell, 2014, 26, 1345-1359.	6.6	188
28	Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus. PLoS Genetics, 2014, 10, e1004078.	3.5	238
29	Antagonistic Regulation of Growth and Immunity by the Arabidopsis Basic Helix-Loop-Helix Transcription Factor HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH INCREASED LEAF INCLINATION1 BINDING bHLH1 Â Â. Plant Physiology, 2014, 164, 1443-1455.	4.8	117
30	The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Frontiers in Plant Science, 2014, 5, 98.	3.6	126
31	Effector Specialization in a Lineage of the Irish Potato Famine Pathogen. Science, 2014, 343, 552-555.	12.6	179
32	Two-Dimensional Data Binning for the Analysis of Genome Architecture in Filamentous Plant Pathogens and Other Eukaryotes. Methods in Molecular Biology, 2014, 1127, 29-51.	0.9	44
33	From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genome Biology, 2013, 14, 211.	8.8	64
34	Regulation of Transcription of Nucleotide-Binding Leucine-Rich Repeat-Encoding Genes SNC1 and RPP4 via H3K4 Trimethylation. Plant Physiology, 2013, 162, 1694-1705.	4.8	93
35	Large-Scale Gene Disruption in Magnaporthe oryzae Identifies MC69, a Secreted Protein Required for Infection by Monocot and Dicot Fungal Pathogens. PLoS Pathogens, 2012, 8, e1002711.	4.7	150
36	Sequence Divergent RXLR Effectors Share a Structural Fold Conserved across Plant Pathogenic Oomycete Species. PLoS Pathogens, 2012, 8, e1002400.	4.7	153

#	Article	IF	CITATIONS
37	Host Protein BSL1 Associates with <i>Phytophthora infestans</i> RXLR Effector AVR2 and the <i>Solanum demissum</i> Immune Receptor R2 to Mediate Disease Resistance. Plant Cell, 2012, 24, 3420-3434.	6.6	130
38	Effector Biology of Plant-Associated Organisms: Concepts and Perspectives. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 235-247.	1.1	355
39	Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen <i>Phytophthora capsici</i> . Molecular Plant-Microbe Interactions, 2012, 25, 1350-1360.	2.6	264
40	Using Hierarchical Clustering of Secreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi. PLoS ONE, 2012, 7, e29847.	2.5	235
41	Purification of Effector–Target Protein Complexes via Transient Expression in Nicotiana benthamiana. Methods in Molecular Biology, 2011, 712, 181-194.	0.9	90
42	<i>Phytophthora infestans</i> effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20832-20837.	7.1	285
43	454 Genome Sequencing of <i>Pseudoperonospora cubensis</i> Reveals Effector Proteins with a QXLR Translocation Motif. Molecular Plant-Microbe Interactions, 2011, 24, 543-553.	2.6	110
44	Structures of Phytophthora RXLR Effector Proteins. Journal of Biological Chemistry, 2011, 286, 35834-35842.	3.4	178
45	Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics, 2010, 11, 637.	2.8	188
46	Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010, 12, 705-715.	2.1	108
47	Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010, 12, 1015-1015.	2.1	11
48	An Effector-Targeted Protease Contributes to Defense against <i>Phytophthora infestans</i> and Is under Diversifying Selection in Natural Hosts. Plant Physiology, 2010, 154, 1794-1804.	4.8	166
49	Signatures of Adaptation to Obligate Biotrophy in the <i>Hyaloperonospora arabidopsidis</i> Genome. Science, 2010, 330, 1549-1551.	12.6	492
50	A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species Myzus persicae (Green Peach Aphid). PLoS Genetics, 2010, 6, e1001216.	3.5	397
51	Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 2010, 11, R73.	9.6	391
52	Association Genetics Reveals Three Novel Avirulence Genes from the Rice Blast Fungal Pathogen <i>Magnaporthe oryzae</i> Â Â. Plant Cell, 2009, 21, 1573-1591.	6.6	410
53	In Planta Expression Screens of <i>Phytophthora infestans</i> RXLR Effectors Reveal Diverse Phenotypes, Including Activation of the <i>Solanum bulbocastanum</i> Disease Resistance Protein Rpi-blb2. Plant Cell, 2009, 21, 2928-2947.	6.6	376
54	Candidate effector gene identification in the ascomycete fungal phytopathogen <i>Venturia inaequalis</i> by expressed sequence tag analysis. Molecular Plant Pathology, 2009, 10, 431-448.	4.2	33

#	Article	IF	CITATIONS
55	Ten things to know about oomycete effectors. Molecular Plant Pathology, 2009, 10, 795-803.	4.2	185
56	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	27.8	1,405
57	Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1654-1659.	7.1	260
58	Analysis of the Pythium ultimum transcriptome using Sanger and Pyrosequencing approaches. BMC Genomics, 2008, 9, 542.	2.8	78
59	Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Signaling and Behavior, 2008, 3, 251-253.	2.4	12
60	Structure of the Glucanase Inhibitor Protein (GIP) Family from <i>Phytophthora</i> Species Suggests Coevolution with Plant Endo-β-1,3-Glucanases. Molecular Plant-Microbe Interactions, 2008, 21, 820-830.	2.6	101
61	Structure and Function of RXLR Effectors of Plant Pathogenic Oomycetes. , 2008, , 161-171.		1
62	A Phytophthora infestans Cystatin-Like Protein Targets a Novel Tomato Papain-Like Apoplastic Protease. Plant Physiology, 2007, 143, 364-377.	4.8	277
63	Adaptive Evolution Has Targeted the C-Terminal Domain of the RXLR Effectors of Plant Pathogenic Oomycetes. Plant Cell, 2007, 19, 2349-2369.	6.6	315
64	A functional genetic assay for nuclear trafficking in plants. Plant Journal, 2007, 50, 149-158.	5.7	70
65	Oomycete genomics: new insights and future directions. FEMS Microbiology Letters, 2007, 274, 1-8.	1.8	79
66	Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis. Science, 2006, 313, 1261-1266.	12.6	1,059
67	Computational and comparative analyses of 150 full-length cDNA sequences from the oomycete plant pathogen Phytophthora infestans. Fungal Genetics and Biology, 2006, 43, 20-33.	2.1	65
68	The C-terminal half ofPhytophthora infestansRXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death inNicotiana benthamiana. Plant Journal, 2006, 48, 165-176.	5.7	402
69	Phytophthora functional genomics database (PFGD): functional genomics of phytophthora-plant interactions. Nucleic Acids Research, 2006, 34, D465-D470.	14.5	20
70	The Malarial Host-Targeting Signal Is Conserved in the Irish Potato Famine Pathogen. PLoS Pathogens, 2006, 2, e50.	4.7	189
71	Patterns of Diversifying Selection in the Phytotoxin-like scr74 Gene Family of Phytophthora infestans. Molecular Biology and Evolution, 2005, 22, 659-672.	8.9	140
72	Linking sequence to phenotype in Phytophthora–plant interactions. Trends in Microbiology, 2004, 12, 193-200.	7.7	65

#	Article	IF	CITATIONS
73	Characterisation of a protein from Venturia inaequalis that induces necrosis in Malus carrying the Vm resistance gene. Physiological and Molecular Plant Pathology, 2003, 62, 193-202.	2.5	32
74	Effects of cyanide and hypoxia on membrane currents in neurones acutely dissociated from the rostral ventrolateral medulla of the rat. Brain Research, 1999, 830, 246-257.	2.2	38
75	Detection of mRNA species in bulbospinal neurons isolated from the rostral ventrolateral medulla using single-cell RT–PCR. Brain Research Protocols, 1999, 4, 367-377.	1.6	27
76	O2-sensitive K+ current in undifferentiated and NGF-treated PC12 cell variants. NeuroReport, 1997, 8, 1369-1373.	1.2	3