List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7109642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reliable Estimates of Power Delivery During Mechanical Ventilation Utilizing Easily Obtained Bedside Parameters. Respiratory Care, 2022, 67, 177-183.	1.6	4
2	Mechanisms of oxygenation responses to proning and recruitment in COVID-19 pneumonia. Intensive Care Medicine, 2022, 48, 56-66.	8.2	38
3	A more gradual positive end-expiratory pressure increase reduces lung damage and improves cardiac function in experimental acute respiratory distress syndrome. Journal of Applied Physiology, 2022, 132, 375-387.	2.5	2
4	Prone Position and COVID-19: Mechanisms and Effects*. Critical Care Medicine, 2022, 50, 873-875.	0.9	12
5	Static and Dynamic Measurements of Compliance and Driving Pressure: A Pilot Study. Frontiers in Physiology, 2022, 13, 773010.	2.8	7
6	Mechanical power thresholds during mechanical ventilation: An experimental study. Physiological Reports, 2022, 10, e15225.	1.7	15
7	In search of the Holy Grail: identifying the best PEEP in ventilated patients. Intensive Care Medicine, 2022, 48, 728-731.	8.2	13
8	Intracycle power distribution in a heterogeneous multi-compartmental mathematical model: possible links to strain and VILI. Intensive Care Medicine Experimental, 2022, 10, .	1.9	4
9	The physiological underpinnings of life-saving respiratory support. Intensive Care Medicine, 2022, 48, 1274-1286.	8.2	15
10	Paradoxical response to chest wall loading predicts a favorable mechanical response to reduction in tidal volume or PEEP. Critical Care, 2022, 26, .	5.8	7
11	Reply to Tobin et al.: Respiratory Drive Measurements Do Not Signify Conjectural Patient Self-inflicted Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 143-144.	5.6	4
12	Elastic Power of Mechanical Ventilation in Morbid Obesity and Severe Hypoxemia. Respiratory Care, 2021, 66, 626-634.	1.6	11
13	COVID-19 and ARDS: the baby lung size matters. Intensive Care Medicine, 2021, 47, 133-134.	8.2	20
14	Pathophysiology of COVID-19-associated acute respiratory distress syndrome. Lancet Respiratory Medicine,the, 2021, 9, e1.	10.7	22
15	"Established―Respiratory Treatment in Acute Respiratory Distress Syndrome: Scientific Rigor or a Square Peg in a Round Hole?. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 779-779.	5.6	0
16	Can We Always Trust the Wisdom of the Body?. Critical Care Medicine, 2021, Publish Ahead of Print, .	0.9	0
17	Prevalence and outcome of silent hypoxemia in COVID-19. Minerva Anestesiologica, 2021, 87, 325-333.	1.0	49
18	Intra-cycle power: is the flow profile a neglected component of lung protection?. Intensive Care Medicine, 2021, 47, 609-611.	8.2	16

#	Article	IF	CITATIONS
19	The authors respond. Respiratory Care, 2021, 66, 887.1-887.	1.6	о
20	Paradoxically Improved Respiratory Compliance With Abdominal Compression in COVID-19 ARDS. Chest, 2021, 160, 1739-1742.	0.8	21
21	Conceptual simplicity in pursuit of precision. Intensive Care Medicine, 2021, 47, 920-921.	8.2	1
22	The impact of fluid status and decremental PEEP strategy on cardiac function and lung and kidney damage in mild-moderate experimental acute respiratory distress syndrome. Respiratory Research, 2021, 22, 214.	3.6	11
23	Improving lung compliance by external compression of the chest wall. Critical Care, 2021, 25, 264.	5.8	22
24	Personalized mechanical ventilation in acute respiratory distress syndrome. Critical Care, 2021, 25, 250.	5.8	97
25	Role of total lung stress on the progression of early COVID-19 pneumonia. Intensive Care Medicine, 2021, 47, 1130-1139.	8.2	51
26	Physiology of PEEP and Auto-PEEP. , 2021, , 177-188.		0
27	COVID-19 pneumonia: pathophysiology and management. European Respiratory Review, 2021, 30, 210138.	7.1	84
28	Intracycle power and ventilation mode as potential contributors to ventilator-induced lung injury. Intensive Care Medicine Experimental, 2021, 9, 55.	1.9	12
29	Dorsal Push and Abdominal Binding Improve Respiratory Compliance and Driving Pressure in Proned Coronavirus Disease 2019 Acute Respiratory Distress Syndrome. , 2021, 3, e0593.		9
30	Static and Dynamic Contributors to Ventilator-induced Lung Injury in Clinical Practice. Pressure, Energy, and Power. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 767-774.	5.6	135
31	Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Medicine, 2020, 46, 2187-2196.	8.2	169
32	Dealing With the CARDS of COVID-19*. Critical Care Medicine, 2020, 48, 1239-1241.	0.9	17
33	Integrating the evidence: confronting the COVID-19 elephant. Intensive Care Medicine, 2020, 46, 1904-1907.	8.2	6
34	Time Course of Evolving Ventilator-Induced Lung Injury: The "Shrinking Baby Lung― Critical Care Medicine, 2020, 48, 1203-1209.	0.9	53
35	Hysteresis As an Indicator of Recruitment and Ventilator-Induced Lung Injury Risk*. Critical Care Medicine, 2020, 48, 1542-1543.	0.9	5
36	Prone position in ARDS patients: why, when, how and for whom. Intensive Care Medicine, 2020, 46, 2385-2396.	8.2	243

#	Article	IF	CITATIONS
37	Elastic power but not driving power is the key promoter of ventilator-induced lung injury in experimental acute respiratory distress syndrome. Critical Care, 2020, 24, 284.	5.8	15
38	What have we learned from animal models of ventilator-induced lung injury?. Intensive Care Medicine, 2020, 46, 2377-2380.	8.2	13
39	Finding Best PEEP: A Little at a Time. Respiratory Care, 2020, 65, 722-724.	1.6	1
40	"Less is More―in mechanical ventilation. Intensive Care Medicine, 2020, 46, 780-782.	8.2	19
41	COVID-19 phenotypes: leading or misleading?. European Respiratory Journal, 2020, 56, 2002195.	6.7	20
42	Estimating the Damaging Power of High-Stress Ventilation. Respiratory Care, 2020, 65, 1046-1052.	1.6	10
43	Which component of mechanical power is most important in causing VILI?. Critical Care, 2020, 24, 39.	5.8	22
44	Management of COVID-19 Respiratory Distress. JAMA - Journal of the American Medical Association, 2020, 323, 2329.	7.4	842
45	The baby lung and the COVID-19 era. Intensive Care Medicine, 2020, 46, 1438-1440.	8.2	39
46	Does Iso-mechanical Power Lead to Iso-lung Damage?. Anesthesiology, 2020, 132, 1126-1137.	2.5	39
47	Spontaneous breathing, transpulmonary pressure and mathematical trickery. Annals of Intensive Care, 2020, 10, 88.	4.6	36
48	COVID-19: scientific reasoning, pragmatism and emotional bias. Annals of Intensive Care, 2020, 10, 134.	4.6	11
49	How I optimize power to avoid VILI. Critical Care, 2019, 23, 326.	5.8	10
50	Thinking forward: promising but unproven ideas for future intensive care. Critical Care, 2019, 23, 197.	5.8	2
51	The tidal volume fix?. Journal of Thoracic Disease, 2019, 11, S1279-S1279.	1.4	1
52	Evolving concepts for safer ventilation. Critical Care, 2019, 23, 114.	5.8	28
53	Driving Pressure: Defining the Range. Respiratory Care, 2019, 64, 883-889.	1.6	8
54	Understanding Lactatemia in Human Sepsis. Potential Impact for Early Management. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 582-589.	5.6	90

#	Article	IF	CITATIONS
55	Positive End-expiratory Pressure and Mechanical Power. Anesthesiology, 2019, 130, 119-130.	2.5	80
56	Gradually Increasing Tidal Volume May Mitigate Experimental Lung Injury in Rats. Anesthesiology, 2019, 130, 767-777.	2.5	22
57	Acute Lobar Atelectasis. Chest, 2019, 155, 1049-1058.	0.8	22
58	Time to Rethink the Approach to Treating Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2018, 319, 664.	7.4	16
59	Energetics and the Root Mechanical Cause for Ventilator-induced Lung Injury. Anesthesiology, 2018, 128, 1062-1064.	2.5	24
60	Conditional Value of Raising Positive End-Expiratory Pressure to Counter Vigorous Breathing Efforts in Injured Lungs. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1239-1240.	5.6	0
61	Dissipation of energy during the respiratory cycle: conditional importance of ergotrauma to structural lung damage. Current Opinion in Critical Care, 2018, 24, 16-22.	3.2	24
62	Conditional Hemodynamic Tolerance to Decremental Recruitment of the "Open Lungâ€*. Critical Care Medicine, 2018, 46, 1694-1695.	0.9	1
63	Firmer footing for ventilating and monitoring the injured lung. Journal of Thoracic Disease, 2018, 10, S4047-S4052.	1.4	1
64	Volutrauma and atelectrauma: which is worse?. Critical Care, 2018, 22, 264.	5.8	39
65	Physiology-guided management of hemodynamics in acute respiratory distress syndrome. Annals of Translational Medicine, 2018, 6, 353-353.	1.7	21
66	Positional effects on the distributions of ventilation and end-expiratory gas volume in the asymmetric chest—a quantitative lung computed tomographic analysis. Intensive Care Medicine Experimental, 2018, 6, 9.	1.9	2
67	PEEP titration: the effect of prone position and abdominal pressure in an ARDS model. Intensive Care Medicine Experimental, 2018, 6, 3.	1.9	22
68	Do trials that report a neutral or negative treatment effect improve the care of critically ill patients? No. Intensive Care Medicine, 2018, 44, 1989-1991.	8.2	15
69	Should we titrate positive end-expiratory pressure based on an end-expiratory transpulmonary pressure?. Annals of Translational Medicine, 2018, 6, 391-391.	1.7	7
70	Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Medicine, 2017, 43, 304-377.	8.2	4,590
71	Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Critical Care Medicine, 2017, 45, 486-552.	0.9	2,336
72	Clinical Deployment of the Esophageal Balloon Catheter—Making the Case*. Critical Care Medicine, 2017, 45, 1419-1421.	0.9	0

#	Article	IF	CITATIONS
73	The intensive care medicine research agenda for airways, invasive and noninvasive mechanical ventilation. Intensive Care Medicine, 2017, 43, 1352-1365.	8.2	41
74	The future of mechanical ventilation: lessons from the present and the past. Critical Care, 2017, 21, 183.	5.8	176
75	Respiratory support in patients with acute respiratory distress syndrome: an expert opinion. Critical Care, 2017, 21, 240.	5.8	84
76	Seven unconfirmed ideas to improve future ICU practice. Critical Care, 2017, 21, 315.	5.8	6
77	Time-sensitive therapeutics. Critical Care, 2017, 21, 317.	5.8	5
78	Management of Critical Burn Injuries: Recent Developments. Korean Journal of Critical Care Medicine, 2017, 32, 9-21.	0.1	9
79	Dynamic predictors of VILI risk: beyond the driving pressure. Intensive Care Medicine, 2016, 42, 1597-1600.	8.2	70
80	Should Early Prone Positioning Be a Standard of Care in ARDS With Refractory Hypoxemia? Wrong Question—Reply. Respiratory Care, 2016, 61, 1564.2-1565.	1.6	1
81	The Effect of Compartmental Asymmetry on the Monitoring of Pulmonary Mechanics and Lung Volumes. Respiratory Care, 2016, 61, 1536-1542.	1.6	4
82	Strain Rate and Cycling Frequency—The "Dynamic Duo―of Injurious Tidal Stress*. Critical Care Medicine, 2016, 44, 1800-1801.	0.9	6
83	ls Automated Weaning Superior to Manual Spontaneous Breathing Trials?. Respiratory Care, 2016, 61, 749-760.	1.6	3
84	Should Early Prone Positioning Be a Standard of Care in ARDS With Refractory Hypoxemia?. Respiratory Care, 2016, 61, 818-829.	1.6	11
85	The "baby lung" became an adult. Intensive Care Medicine, 2016, 42, 663-673.	8.2	206
86	Advances in the support of respiratory failure: putting all the evidence together. Critical Care, 2015, 19, S4.	5.8	5
87	Impact of Chest Wall Modifications and Lung Injury on the Correspondence Between Airway and Transpulmonary Driving Pressures. Critical Care Medicine, 2015, 43, e287-e295.	0.9	35
88	Biological Impact of Transpulmonary Driving Pressure in Experimental Acute Respiratory Distress Syndrome. Anesthesiology, 2015, 123, 423-433.	2.5	60
89	Does high-pressure, high-frequency oscillation shake the foundations of lung protection?. Intensive Care Medicine, 2015, 41, 2210-2212.	8.2	6
90	Critical Care Evidence—New Directions. JAMA - Journal of the American Medical Association, 2015, 313, 893.	7.4	29

#	Article	IF	CITATIONS
91	Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Critical Care, 2015, 19, 161.	5.8	219
92	Spontaneous Breathing, Extrapulmonary CO2 Removal, and Ventilator-Induced Lung Injury Risk. Critical Care Medicine, 2014, 42, 758-760.	0.9	3
93	Mid-Frequency Ventilation: A Viable Option for Lung Protection?. Respiratory Care, 2014, 59, 1808-1809.	1.6	2
94	Drainage of pleural effusion in mechanically ventilated patients: Time to measure chest wall compliance?. Journal of Critical Care, 2014, 29, 808-813.	2.2	9
95	Prone Position in Acute Respiratory Distress Syndrome. Rationale, Indications, and Limits. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1286-1293.	5.6	349
96	Mechanical ventilation: past lessons and the near future. Critical Care, 2013, 17, S1.	5.8	40
97	Our favorite unproven ideas for future critical care. Critical Care, 2013, 17, S9.	5.8	6
98	Lower tidal volumes for everyone: principle or prescription?. Intensive Care Medicine, 2013, 39, 3-5.	8.2	11
99	Value and Limitations of Transpulmonary Pressure Calculations During Intra-Abdominal Hypertension. Critical Care Medicine, 2013, 41, 1870-1877.	0.9	46
100	Ventilator-Associated Problems Related to Obstructive Lung DiseaseDiscussion. Respiratory Care, 2013, 58, 938-949.	1.6	8
101	Too Much for Too Long—Wrong Targets, Wrong Timing?*. Critical Care Medicine, 2013, 41, 664-665.	0.9	10
102	Position, Positive End-Expiratory Pressure, and Obstructive Obesity*. Critical Care Medicine, 2013, 41, 2657-2659.	0.9	4
103	Unproven clinical evidence in mechanical ventilation. Current Opinion in Critical Care, 2012, 18, 1-7.	3.2	16
104	Experimental intra-abdominal hypertension attenuates the benefit of positive end-expiratory pressure in ventilating effusion-compressed lungs*. Critical Care Medicine, 2012, 40, 2176-2181.	0.9	12
105	Transpulmonary pressure as a surrogate of plateau pressure for lung protective strategy: not perfect but more physiologic. Intensive Care Medicine, 2012, 38, 339-341.	8.2	21
106	Prone positioning for ARDS: defining the target. , 2012, , 405-407.		0
107	Impact of pressure profile and duration of recruitment maneuvers on morphofunctional and biochemical variables in experimental lung injury*. Critical Care Medicine, 2011, 39, 1074-1081.	0.9	40
108	Spontaneously regulated vs. controlled ventilation of acute lung injury/acute respiratory distress syndrome. Current Opinion in Critical Care, 2011, 17, 24-29.	3.2	52

#	Article	IF	CITATIONS
109	Recruitment by sustained inflation: time for a change. Intensive Care Medicine, 2011, 37, 1572-1574.	8.2	32
110	Point: Is Pressure Assist-Control Preferred Over Volume Assist-Control Mode for Lung Protective Ventilation in Patients With ARDS? Yes. Chest, 2011, 140, 286-290.	0.8	26
111	Dynamic Hyperinflation and Auto–Positive End-Expiratory Pressure. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 756-762.	5.6	113
112	Can we prevent the spread of focal lung inflammation?. Critical Care Medicine, 2010, 38, S574-S581.	0.9	4
113	Prone positioning for ARDS: defining the target. Intensive Care Medicine, 2010, 36, 559-561.	8.2	7
114	Safer ventilation of the injured lung: one step closer. Critical Care, 2010, 14, 192.	5.8	26
115	Semiâ€quantitative tracking of intraâ€airway fluids by computed tomography. Clinical Physiology and Functional Imaging, 2009, 29, 406-413.	1.2	12
116	Acoustic monitoring – super sonics?. Critical Care, 2009, 13, 162.	5.8	4
117	Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Medicine, 2008, 34, 17-60.	8.2	2,078
118	Lung Stress and Strain during Mechanical Ventilation for Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 346-355.	5.6	633
119	How best to recruit the injured lung?. Critical Care, 2008, 12, 159.	5.8	10
120	Lung injury—Settle for a sketch or design a blueprint?*. Critical Care Medicine, 2008, 36, 2922-2925.	0.9	2
121	Propagation prevention: A complementary mechanism for "lung protective―ventilation in acute respiratory distress syndrome*. Critical Care Medicine, 2008, 36, 3252-3258.	0.9	55
122	Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Critical Care Medicine, 2008, 36, 296-327.	0.9	7,331
123	The pulmonary artery catheter: In medio virtus. Critical Care Medicine, 2008, 36, 3093-3096.	0.9	133
124	Mechanical ventilation in the acute respiratory distress syndrome—2006. Journal of Organ Dysfunction, 2007, 3, 224-231.	0.3	1
125	Monitoring the Mechanically Ventilated Patient. Critical Care Clinics, 2007, 23, 575-611.	2.6	9
126	The "open lung―compromise. Intensive Care Medicine, 2007, 33, 1114-1116.	8.2	4

#	Article	IF	CITATIONS
127	Limitations of clinical trials in acute lung injury and acute respiratory distress syndrome. Current Opinion in Critical Care, 2006, 12, 25-31.	3.2	13
128	Early phase of lung-protective ventilation: A place for paralytics?*. Critical Care Medicine, 2006, 34, 2851-2853.	0.9	17
129	Partitioning the work-sparing effects of partial ventilatory support in airflow obstruction. Critical Care, 2004, 8, 101.	5.8	1
130	Reluctant horses at the digital river. Critical Care, 2004, 8, 313-4.	5.8	1
131	Ventilatory management of acute respiratory distress syndrome: A consensus of two. Critical Care Medicine, 2004, 32, 250-255.	0.9	179
132	Mechanical ventilation in sepsis-induced acute lung injury/acute respiratory distress syndrome: An evidence-based review. Critical Care Medicine, 2004, 32, S548-S553.	0.9	141
133	Intercomparison of recruitment maneuver efficacy in three models of acute lung injury*. Critical Care Medicine, 2004, 32, 2371-2377.	0.9	103
134	Advances in the understanding of acute respiratory distress syndrome: summarizing a decade of progress. Current Opinion in Critical Care, 2004, 10, 265-271.	3.2	8
135	Extremely High-Pressure Lung Recruitment Maneuver May Be Life Saving in the Most Severe Cases of Acute Lung Injury/Acute Respiratory Distress Syndrome: The author replies. Critical Care Medicine, 2004, 32, 1442.	0.9	1
136	Effect of core body temperature on ventilator-induced lung injury. Critical Care Medicine, 2004, 32, 144-149.	0.9	98
137	Relative importance of stretch and shear in ventilator-induced lung injury *. Critical Care Medicine, 2004, 32, 302-304.	0.9	35
138	Transient hemodynamic effects of recruitment maneuvers in three experimental models of acute lung injury*. Critical Care Medicine, 2004, 32, 2378-2384.	0.9	159
139	Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Critical Care, 2003, 7, 435.	5.8	82
140	The Pragmatics of Prone Positioning. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 1359-1363.	5.6	122
141	Oscillations and Noise. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 47-53.	5.6	34
142	Pulmonary microvascular fracture in a patient with acute respiratory distress syndrome*. Critical Care Medicine, 2002, 30, 2368-2370.	0.9	30
143	Auto-positive end-expiratory pressure and flow limitation in adult respiratory distress syndrome–Intrinsically different? *. Critical Care Medicine, 2002, 30, 2140-2141.	0.9	5
144	Relative roles of vascular and airspace pressures in ventilator-induced lung injury. Critical Care Medicine, 2001, 29, 1593-1598.	0.9	63

#	Article	IF	CITATIONS
145	Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Critical Care Medicine, 2000, 28, 295-303.	0.9	608
146	Effects of mean airway pressure and tidal excursion on lung injury induced by mechanical ventilation in an isolated perfused rabbit lung model. Critical Care Medicine, 1999, 27, 1533-1541.	0.9	68
147	Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Critical Care Medicine, 1997, 25, 16-27.	0.9	219
148	Implications of a biphasic two-compartment model of constant flow ventilation for the clinical setting. Journal of Critical Care, 1994, 9, 114-123.	2.2	55
149	A General Mathematical Model for Respiratory Dynamics Relevant to the Clinical Setting. The American Review of Respiratory Disease, 1993, 147, 14-24.	2.9	86
150	A NONLINEAR MATHEMATICAL MODEL OF PRESSURE PRESET VENTILATION: DESCRIPTION AND LIMITING VALUES FOR KEY OUTCOME VARIABLES. Mathematical Models and Methods in Applied Sciences, 1993, 03, 839-859.	3.3	7
151	Breath-stacking Increases the Depth and Duration of Chest Expansion by Incentive Spirometry. The American Review of Respiratory Disease, 1990, 141, 343-346.	2.9	48
152	<i>In Vitro</i> versus <i>In Vivo</i> Comparison of Endotracheal Tube Airflow Resistance. The American Review of Respiratory Disease, 1989, 140, 10-16.	2.9	234
153	Should PEEP Be Used in Airflow Obstruction?. The American Review of Respiratory Disease, 1989, 140, 1-3.	2.9	191
154	External Work Output and Force Generation during Synchronized Intermittent Mechanical Ventilation: Effect of Machine Assistance on Breathing Effort. The American Review of Respiratory Disease, 1988, 138, 1169-1179.	2.9	233
155	Bedside Estimation of the Inspiratory Work of Breathing during Mechanical Ventilation. Chest, 1986, 89, 56-63.	0.8	78
156	The Inspiratory Workload of Patient-Initiated Mechanical Ventilation ^{1–} ⁴ . The American Review of Respiratory Disease, 1986, 134, 902-909.	2.9	311
157	The Inspiratory Work of Breathing during Assisted Mechanical Ventilation. Chest, 1985, 87, 612-618.	0.8	273
158	End-Tidal to Arterial PCO2 Ratio as Guide to Weaning from Veno-Venous Extra-Corporeal Membrane Oxygenation. American Journal of Respiratory and Critical Care Medicine, 0, , .	5.6	11