

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7109600/publications.pdf Version: 2024-02-01

XIN HU

#	Article	IF	CITATIONS
1	Enhanced CO ₂ Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons. ACS Sustainable Chemistry and Engineering, 2016, 4, 1439-1445.	6.7	313
2	Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution with Finger-Citron-Residue-Based Activated Carbon. Industrial & Engineering Chemistry Research, 2013, 52, 14297-14303.	3.7	267
3	CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell. Journal of Colloid and Interface Science, 2018, 511, 259-267.	9.4	252
4	Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation. Journal of Colloid and Interface Science, 2019, 539, 563-574.	9.4	205
5	CO ₂ -Filling Capacity and Selectivity of Carbon Nanopores: Synthesis, Texture, and Pore-Size Distribution from Quenched-Solid Density Functional Theory (QSDFT). Environmental Science & Technology, 2011, 45, 7068-7074.	10.0	189
6	N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance. Chemical Engineering Journal, 2019, 359, 428-435.	12.7	176
7	In-situ synthesis of AgNbO3/g-C3N4 photocatalyst via microwave heating method for efficiently photocatalytic H2 generation. Journal of Colloid and Interface Science, 2019, 534, 163-171.	9.4	174
8	Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO ₂ Sorbent Synthesized by Combining Ammoxidation with KOH Activation. Environmental Science & Technology, 2015, 49, 7063-7070.	10.0	173
9	A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke. Carbon, 2015, 81, 465-473.	10.3	158
10	Biomass derived nitrogen and sulfur co-doped porous carbons for efficient CO2 adsorption. Separation and Purification Technology, 2022, 281, 119899.	7.9	143
11	Nitrogen enriched porous carbons from d-glucose with excellent CO2 capture performance. Chemical Engineering Journal, 2019, 362, 794-801.	12.7	140
12	High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation. Green Energy and Environment, 2023, 8, 283-295.	8.7	139
13	Highly efficient CO2 adsorption by nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation. Carbon, 2018, 130, 31-40.	10.3	133
14	Novel Nitrogen-Doped Porous Carbons Derived from Graphene for Effective CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 3349-3358.	3.7	130
15	Tetraethylenepentamine-Modified Siliceous Mesocellular Foam (MCF) for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 4221-4228.	3.7	120
16	Efficient CO ₂ Capture by Porous Carbons Derived from Coconut Shell. Energy & Fuels, 2017, 31, 4287-4293.	5.1	111
17	A novel Bi ₂ S ₃ /KTa _{0.75} Nb _{0.25} O ₃ nanocomposite with high efficiency for photocatalytic and piezocatalytic N ₂ fixation. Journal of Materials Chemistry A. 2021. 9. 13344-13354.	10.3	109
18	Hydrogen Storage in Chemically Reducible Mesoporous and Microporous Ti Oxides. Journal of the American Chemical Society, 2006, 128, 11740-11741.	13.7	108

Xin Hu

#	Article	IF	CITATIONS
19	Superior CO2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin. Journal of Environmental Sciences, 2020, 93, 109-116.	6.1	105
20	Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor. Fuel, 2022, 326, 125119.	6.4	104
21	Enhanced adsorptive removal of hazardous anionic dye "congo red―by a Ni/Cu mixed-component metal–organic porous material. RSC Advances, 2014, 4, 35124-35130.	3.6	102
22	Facile preparation of novel nickel sulfide modified KNbO3 heterojunction composite and its enhanced performance in photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2021, 590, 548-560.	9.4	97
23	Efficient CO ₂ Adsorption on Nitrogen-Doped Porous Carbons Derived from <scp>d</scp> -Glucose. Energy & Fuels, 2018, 32, 6955-6963.	5.1	96
24	A Hierarchical Bipyridine onstructed Framework for Highly Efficient Carbon Dioxide Capture and Catalytic Conversion. ChemSusChem, 2017, 10, 1186-1192.	6.8	94
25	Role of Hydrogen Peroxide Preoxidizing on CO ₂ Adsorption of Nitrogen-Doped Carbons Produced from Coconut Shell. ACS Sustainable Chemistry and Engineering, 2016, 4, 2806-2813.	6.7	92
26	Porous Carbons Derived from Sustainable Biomass via a Facile One-Step Synthesis Strategy as Efficient CO ₂ Adsorbents. Industrial & Engineering Chemistry Research, 2020, 59, 6194-6201.	3.7	92
27	Efficient nitrogen doped porous carbonaceous CO2 adsorbents based on lotus leaf. Journal of Environmental Sciences, 2021, 103, 268-278.	6.1	92
28	Giant enhancement of photocatalytic H2 production over KNbO3 photocatalyst obtained via carbon doping and MoS2 decoration. International Journal of Hydrogen Energy, 2018, 43, 4347-4354.	7.1	91
29	CuS/KTa0.75Nb0.25O3 nanocomposite utilizing solar and mechanical energy for catalytic N2 fixation. Journal of Colloid and Interface Science, 2021, 603, 220-232.	9.4	90
30	CO ₂ Adsorption on Hazelnut-Shell-Derived Nitrogen-Doped Porous Carbons Synthesized by Single-Step Sodium Amide Activation. Industrial & Engineering Chemistry Research, 2020, 59, 7046-7053.	3.7	88
31	Removal of Dibenzothiophene with Composite Adsorbent MOF-5/Cu(I). Energy & Fuels, 2013, 27, 816-821.	5.1	87
32	Water caltrop shell-derived nitrogen-doped porous carbons with high CO2 adsorption capacity. Biomass and Bioenergy, 2021, 145, 105969.	5.7	87
33	Nitrogen-Doped Porous Carbons from Lotus Leaf for CO ₂ Capture and Supercapacitor Electrodes. Energy & Fuels, 2019, 33, 6568-6576.	5.1	84
34	Adsorption of CO ₂ by Petroleum Coke Nitrogen-Doped Porous Carbons Synthesized by Combining Ammoxidation with KOH Activation. Industrial & Engineering Chemistry Research, 2016, 55, 757-765.	3.7	75
35	Fabrication of a Z-scheme AgBr/Bi ₄ O ₅ Br ₂ nanocomposite and its high efficiency in photocatalytic N ₂ fixation and dye degradation. Inorganic Chemistry Frontiers, 2019, 6, 3083-3092.	6.0	71
36	CO2 removal from flue gas with amine-impregnated titanate nanotubes. Nano Energy, 2016, 25, 1-8.	16.0	69

Xin Hu

#	Article	IF	CITATIONS
37	Effective nitrogen and sulfur co-doped porous carbonaceous CO2 adsorbents derived from amino acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127750.	4.7	69
38	Novel Ternary MoS ₂ /C-ZnO Composite with Efficient Performance in Photocatalytic NH ₃ Synthesis under Simulated Sunlight. ACS Sustainable Chemistry and Engineering, 2018, 6, 14866-14879.	6.7	67
39	Highly Efficient Nitrogen-Doped Porous Carbonaceous CO ₂ Adsorbents Derived from Biomass. Energy & Fuels, 2021, 35, 1620-1628.	5.1	67
40	Enhancement of CO2 adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine. Journal of Materials Chemistry A, 2013, 1, 6208.	10.3	63
41	Efficient CO ₂ Capture by Nitrogen-Doped Biocarbons Derived from Rotten Strawberries. Industrial & Engineering Chemistry Research, 2017, 56, 14115-14122.	3.7	62
42	Capturing CO ₂ with Amine-Impregnated Titanium Oxides. Energy & Fuels, 2013, 27, 5433-5439.	5.1	57
43	Nitrogen-doped porous carbon spheres derived from <scp>d</scp> -glucose as highly-efficient CO ₂ sorbents. RSC Advances, 2015, 5, 37964-37969.	3.6	57
44	Synthesis of potassium Bitartrate-derived porous carbon via a facile and Self-Activating strategy for CO2 adsorption application. Separation and Purification Technology, 2022, 296, 121368.	7.9	56
45	Deposition and properties of zirconia coatings on a zirconium alloy produced by pulsed DC plasma electrolytic oxidation. Surface and Coatings Technology, 2013, 221, 150-157.	4.8	54
46	Efficient N-Doped Porous Carbonaceous CO ₂ Adsorbents Derived from Commercial Urea-Formaldehyde Resin. Energy & Fuels, 2022, 36, 5825-5832.	5.1	54
47	A novel Z-scheme Bi-Bi ₂ O ₃ /KTa _{0.5} Nb _{0.5} O ₃ heterojunction for efficient photocatalytic conversion of N ₂ to NH ₃ . Inorganic Chemistry Frontiers, 2022, 9, 2714-2724.	6.0	53
48	Coupling CsPbBr ₃ Quantum Dots with Covalent Triazine Frameworks for Visibleâ€Lightâ€Driven CO ₂ Reduction. ChemSusChem, 2021, 14, 1131-1139.	6.8	52
49	Biomass based N-doped porous carbons as efficient CO2 adsorbents and high-performance supercapacitor electrodes. Separation and Purification Technology, 2021, 275, 119204.	7.9	49
50	Preparation of biomass-derived porous carbons by a facile method and application to CO2 adsorption. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116, 128-136.	5.3	46
51	A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology. Applied Energy, 2015, 147, 214-223.	10.1	41
52	CO ₂ Adsorption of Nitrogen-Doped Carbons Prepared from Nitric Acid Preoxidized Petroleum Coke. Energy & Fuels, 2017, 31, 11060-11068.	5.1	40
53	Enhanced CO ₂ Adsorption on Nitrogen-Doped Porous Carbons Derived from Commercial Phenolic Resin. Energy & Fuels, 2018, 32, 2081-2088.	5.1	40
54	Tetraethylenepentamine modified protonated titanate nanotubes for CO 2 capture. Fuel Processing Technology, 2015, 138, 663-669.	7.2	39

Хім Ни

#	Article	IF	CITATIONS
55	Low-Temperature and Single-Step Synthesis of N-Doped Porous Carbons with a High CO ₂ Adsorption Performance by Sodium Amide Activation. Energy & Fuels, 2018, 32, 10830-10837.	5.1	38
56	CO2 Capture with Activated Carbons Prepared by Petroleum Coke and KOH at Low Pressure. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	36
57	Tetraethylenepentamine-Modified Silica Nanotubes for Low-Temperature CO ₂ Capture. Energy & Fuels, 2013, 27, 7673-7680.	5.1	36
58	Hydrogen Storage in Microporous Titanium Oxides Reduced by Early Transition Metal Organometallic Sandwich Compounds. Chemistry of Materials, 2007, 19, 1388-1395.	6.7	35
59	Novel carbon modified KTa0.75Nb0.25O3 nanocubes with excellent efficiency in photocatalytic H2 evolution. Fuel, 2018, 233, 486-496.	6.4	33
60	In Situ Synthesis of Nitrogen-Enriched Activated Carbons from <i>Procambarus clarkii</i> Shells with Enhanced CO ₂ Adsorption Performance. Energy & Fuels, 2018, 32, 9701-9710.	5.1	23
61	Thiophene insertion and lanthanum molybdate modification of g-C3N4 for enhanced visible-light-driven photoactivity in tetracycline degradation. Applied Surface Science, 2022, 592, 153337.	6.1	21
62	Formation and properties of bioactive barium titanate coatings produced by plasma electrolytic oxidation. Ceramics International, 2018, 44, 12978-12986.	4.8	20
63	Synthesis of nitrogen-doped carbon with three-dimensional mesostructures for CO2 capture. Journal of Materials Science, 2015, 50, 1221-1227.	3.7	19
64	Nitrogen and sulfur co-doped porous carbons from polyacrylonitrile fibers for CO2 adsorption. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128, 148-155.	5.3	19
65	Single-Step Synthesis of Nitrogen-Doped Porous Carbons for CO ₂ Capture by Low-Temperature Sodium Amide Activation of Petroleum Coke. Energy & Fuels, 2018, 32, 12787-12794.	5.1	18
66	The construction and online/offline blended learning of small private online courses of <i>Principles of Chemical Engineering</i> . Computer Applications in Engineering Education, 2018, 26, 1519-1526.	3.4	18
67	New Application and Excellent Performance of Ag/KNbO ₃ Nanocomposite in Photocatalytic NH ₃ Synthesis. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	17
68	Effect of Thermal Annealing on Tribological and Corrosion Properties of DLC Coatings. Journal of Materials Engineering and Performance, 2013, 22, 3093-3100.	2.5	16
69	Preparation and CO ₂ Sorption of a High Surface Area Activated Carbon Obtained from the KOH Activation of Finger Citron Residue. Adsorption Science and Technology, 2012, 30, 183-191.	3.2	15
70	Single and bicomponent anionic dyes adsorption equilibrium studies on magnolia-leaf-based porous carbons. RSC Advances, 2015, 5, 63970-63977.	3.6	15
71	Hydrogen Storage in Mesoporous Titanium Oxideâ^'Alkali Fulleride Composites. Inorganic Chemistry, 2008, 47, 2477-2484.	4.0	13
72	Borate's effects on coatings by PEO on AZ91D alloy. Surface Engineering, 2017, 33, 773-778.	2.2	10

Хім Ни

#	Article	IF	CITATIONS
73	Facile Single-Step Synthesis of Porous Carbons as Efficient CO ₂ Adsorbents. Energy & Fuels, 2019, 33, 11544-11551.	5.1	6
74	Analysis of the Effect of Conditions of Preparation of Nitrogen-Doped Activated Carbons Derived from Lotus Leaves by Activation with Sodium Amide on the Formation of Their Porous Structure. Materials, 2021, 14, 1540.	2.9	5
75	Facile synthesis of strontium molybdate coupled g-C3N4 composite for effective tetracycline and dyes degradation under visible light. Advanced Powder Technology, 2022, 33, 103573.	4.1	4