
Carol A Loopstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7109478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 2014, 15, R59.	13.9	424
2	Unique Features of the Loblolly Pine (<i>Pinus taeda</i> L.) Megagenome Revealed Through Sequence Annotation. Genetics, 2014, 196, 891-909.	1.2	207
3	Sequence of the Sugar Pine Megagenome. Genetics, 2016, 204, 1613-1626.	1.2	169
4	Extended Host Range of Agrobacterium tumefaciens in the Genus Pinus. Plant Physiology, 1990, 92, 1226-1232.	2.3	67
5	Xylem-specific gene expression in loblolly pine. Plant Molecular Biology, 1995, 27, 277-291.	2.0	65
6	An arabinogalactan protein associated with secondary cell wall formation in differentiating xylem of loblolly pine. Plant Molecular Biology, 2003, 52, 91-102.	2.0	65
7	Agrobacterium-mediated DNA transfer in sugar pine. Plant Molecular Biology, 1990, 15, 1-9.	2.0	54
8	Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.). BMC Genomics, 2016, 17, 730.	1.2	53
9	Assessing the Gene Content of the Megagenome: Sugar Pine (<i>Pinus lambertiana</i>). G3: Genes, Genomes, Genetics, 2016, 6, 3787-3802.	0.8	51
10	Purification and cloning of an arabinogalactan-protein from xylem of loblolly pine. Planta, 2000, 210, 686-689.	1.6	45
11	Genetic diversity and population structure of <i>Piceaglauca</i> on an altitudinal gradient in interior Alaska. Canadian Journal of Forest Research, 1987, 17, 1519-1526.	0.8	43
12	The Evolutionary Genetics of the Genes Underlying Phenotypic Associations for Loblolly Pine (<i>Pinus taeda</i> , Pinaceae). Genetics, 2013, 195, 1353-1372.	1.2	41
13	Seasonal variation in gene expression for loblolly pines (Pinus taeda) from different geographical regions. Tree Physiology, 2005, 25, 1063-1073.	1.4	40
14	Microarray analysis of genes preferentially expressed in differentiating xylem of loblolly pine (Pinus) Tj ETQq0 0 0	rgBT /Ove	rlgck 10 Tf 5
15	Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole-exome-discovered polymorphisms. Tree Genetics and Genomes, 2017, 13, 1.	0.6	29
16	Real-time RT-PCR analysis of loblolly pine (Pinus taeda) arabinogalactan-protein and arabinogalactan-protein-like genes. Physiologia Plantarum, 2005, 124, 91-106.	2.6	27
17	Natural variation in expression of genes involved in xylem development in loblolly pine (Pinus taeda) Tj ETQq1 1 C).784214 r	gBŢ /Overloc

Detecting the genetic basis of local adaptation in loblolly pine (Pinus taeda L.) using whole exomeâ€wide genotyping and an integrative landscape genomics analysis approach. Ecology and Evolution, 2019, 9, 6798-6809.

0.8 25

CAROL A LOOPSTRA

#	Article	IF	CITATIONS
19	Two Pine Endo-β-1,4-Glucanases Are Associated with Rapidly Growing Reproductive Structures. Plant Physiology, 1998, 116, 959-967.	2.3	22
20	Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms. Tree Physiology, 2013, 33, 763-774.	1.4	21
21	Toward genomic selection in <i>Pinus taeda</i> : Integrating resources to support array design in a complex conifer genome. Applications in Plant Sciences, 2021, 9, e11439.	0.8	19
22	Genes induced by WDS are differentially expressed in two populations of aleppo pine (Pinus) Tj ETQqO 0 0 rgBT	/Overlock 0.6	10 Tf 50 622 18
23	Transient gene expression in differentiating pine wood using microprojectile bombardment. Canadian Journal of Forest Research, 1992, 22, 993-996.	0.8	15
24	Hormonal and developmental regulation of two arabinogalactan-proteins in xylem of loblolly pine (Pinus taeda). Physiologia Plantarum, 2000, 110, 524-529.	2.6	14
25	Predicting Adaptive Genetic Variation of Loblolly Pine (Pinus taeda L.) Populations Under Projected Future Climates Based on Multivariate Models. Journal of Heredity, 2019, 110, 857-865.	1.0	12
26	Sequences upstream and downstream of two xylem-specific pine genes influence their expression. Plant Science, 2000, 160, 77-86.	1.7	11

27	Transcriptomic profile of leaf tissue from the leguminous tree, Millettia pinnata. Tree Genetics and Genomes, 2016, 12, 1.	0.6	11

Exploring the genetic basis of gene transcript abundance and metabolite levels in loblolly pine (Pinus) Tj ETQq0 0 0.028 T/Overlock 10 Tf $\frac{23}{29}$

29	Extensive Variation in Drought-Induced Gene Expression Changes Between Loblolly Pine Genotypes. Frontiers in Genetics, 2021, 12, 661440.	1.1	3
30	MICROSATELLITE MARKERS FOR VERIFYING PARENTAGE OF PECANS. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 515B-515.	0.5	3